20 аминокислот формулы и названия

Сегодня предлагаем ознакомится со статьей на тему: 20 аминокислот формулы и названия с профессиональным описанием и объяснением.

20 аминокислот формулы и названия

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

АМИНОКИСЛОТЫ

Белки — высокомолекулярные природные полимеры, состоящие из аминокислотных остатков, соединенных пептидной связью; являются главной составной частью живых организмов и молекулярной основой процессов жизнедеятельности.

В природе известно более 300 различных аминокислот, но только 20 из них входят в состав белков человека, животных и других высших организмов. Каждая аминокислота имеет карбоксильную группу, аминогруппув α-положении (у 2-го атома углерода) и радикал(боковую цепь), отличающийся у различных аминокислот. При физиологическом значении рН (

7,4) карбоксильная группа аминокислот обычно диссоциирует, а аминогруппа протонируется.

Все аминокислоты (за исключением глицина) содержат асимметричный атом углерода (т. е. такой атом, все четыре валентные связи которого заняты различными заместителями, он называется хиральныи центром), поэтому могут существовать в виде L- и D-стереоизомеров (эталон – глицериновый альдегид):

Для синтеза белков человека используются только L-аминокислоты. В белках с длительным сроком существования L-изомеры медленно могут приобретать D-конфигурацию, причем это происходит с определенной, характерной для каждой аминокислоты скоростью. Так, белки дентина зубов содержат L-аспартат, который переходит в D-форму при температуре тела человека со скоростью 0,01% в год. Поскольку дентин зубов практически не обменивается и не синтезируется у взрослых людей в отсутствие травмы, по содержанию D-аспартата можно установить возраст человека, что используется в клинической и криминалистической практике.

Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к α-углеродному атому.

Структурные формулы 20-ти протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

В последнее время для обозначения аминокислот используют однобуквенные обозначения, для их запоминания используется мнемоническое правило (четвертый столбец).

Глицин Gly G Glycine Гли
Аланин Ala A Alanine Ала
Валин Val V Valine Вал
Изолейцин Ile I Isoleucine Иле
Лейцин Leu L Leucine Лей
Пролин Pro P Proline Про
Серин Ser S Serine Сер
Треонин Thr T Threonine Тре
Цистеин Cys C Cysteine Цис
Метионин Met M Methionine Мет
Аспарагиновая кислота Asp D asparDic acid Асп
Аспарагин Asn N asparagiNe Асн
Глутаминовая кислота Glu E gluEtamic acid Глу
Глутамин Gln Q Q-tamine Глн
Лизин Lys K before L Лиз
Аргинин Arg R aRginine Арг
Гистидин His H Histidine Гис
Фенилаланин Phe F Fenylalanine Фен
Тирозин Tyr Y tYrosine Тир
Триптофан Trp W tWo rings Три
Читайте так же:  Л карнитин дозировка для похудения

Существуют разные классификации аминокислот. Одна из них основана на характеристике интенсивности молекулярного взаимодействия бокового радикала с водой.

1. Гидрофобные (неполярные) (гли, ала, вал, лей, про, иле, три, фен).

2. Гидрофильные (полярные):

а) незаряженные (сер, тре, цис, асн, глн, тир*, мет*);

— отрицательно заряженные (глу, асп);

— положительно заряженные (лиз, арг, гис).

*некоторые источники относят тир и мет к гидрофобным аминокислотам.

Гидрофильные вещества интенсивно взаимодействуют с молекулами воды, они содержат полярные химические связи. Гидрофобность – это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Гидрофобные молекулы обычно неполярны и «предпочитают» находиться среди других нейтральных молекул и неполярных растворителей. Гидрофильность и гидрофобность являются проявлением сил Ван-дер-Ваальса (группа слабых взаимодействий). Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.. Пространственная структура воды стремится вытеснить гидрофобные группы, нарушающие сеть из связанных водородными связями молекул воды. Такое выталкивание из водного раствора и называют гидрофобным взаимодействием. Известно, что биологические биополимеры функционируют в водном окружении и именно наличие гидрофобных связей в значительной мере определяет форму, которую приобретает макромолекула.

Можно классифицировать аминокислоты по строению радикала:

1. Алифатические (гли, ала, вал, лей, илей).

2. Гидроксиаминокислоты (сер, тре).

3. Дикарбоновые (асп, глу).

4. Амиды дикарбоновых кислот (асн, глн).

5. Серосодержащие (мет, цис).

6. Циклические (фен, тир, три, гис).

7. Диаминомонокарбоновые (лиз, арг).

8. Иминокислота (про).

В состав белков человека входит 19 аминокислот и 1 циклическая иминокислота — пролин, имеющая иминогруппу -NH-. Роль гидрофобного радикала в этой молекуле играет насыщенная алифатическая трехуглеродная цепь, образующая 5-членный цикл между α-углеродным атомом и иминогруппой:

Некоторые белки содержат аминокислоты с модифицированными радикалами, отсутствующие в других белках. Так, в полипептидную цепь коллагена входит гидроксилизин, эластина и коллагена — гидроксипролин. Факторы свертывания крови протромбин, проконвертин, белки костной ткани остеокальцин, сиалопротеин содержат γ-карбоксиглутаминовую кислоту:

Гидроксилизин Гидроксипролин γ-Карбоксиглутаминовая кислота

Модификация радикалов таких аминокислот обычно происходит уже после включения их в полипептидную цепь, т.е. на постсинтетическом периоде.

Существует еще одна классификация аминокислот, по способности организма синтезировать их из предшественников:

Незаменимые для человека: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан, аргинин (незаменима для детей), гистидин.

Заменимые для человека: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Мнемоническое правило для запоминания заменимых и незаменимых аминокислот:

Фенилаланин Валин Метионин
Лизин Лейцин Треонин
Аргинин* Изолейцин
Гистидин Триптофан

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9117 —

| 7229 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

20 аминокислот формулы и названия

I) α-аминокислота;
II) β-аминокислота;
III) γ-аминокислота;
IV) ε-аминокислота.

а) 3-аминобутановая;
б) 4-аминобутановая;
в) 6-аминогексановая;
г) аминоэтановая.

I–2–г – альфа-аминокислота – H2N–CH2–COOH – аминоэтановая кислота.

II–3–а – бета-аминокислота – CH3–CH(NH2)–CH2–COOH – 3-аминобутановая кислота.

III–1–б – гамма-аминокислота – H2N–CH2–CH2–CH2–COOH – 4-аминобутановая кислота.

IV–4–в – эпсилон-аминокислота – H2N–(CH2)5–COOH – 6-аминогексановая кислота.

Двадцать аминокислот необходимы для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков ( протеиногенные аминокислоты ). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α-аминокислотами и на их примере можно показать дополнительные способы классификации.

По строению бокового радикала

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин),
  • ароматические (фенилаланин, тирозин, триптофан),
  • серусодержащие (цистеин, метионин),
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH2-группу (лизин, аргинин, гистидин, также глутамин, аспарагин).
Читайте так же:  Л карнитин уколы для похудения
Строение протеиногенных аминокислот

По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е. их синтез происходит в недостаточном количестве, особенно это касается детей.

Интернет-курс Ёршикова С.М. / 1 / 1

Строение и свойства аминокислот. Пептидная связь. Цветные реакции на белки и аминокислоты.

Вспомните из курса биоорганической химии, что все белки и пептиды построены из мономеров – α-аминокислот, имеющих общую формулу:

,

где R – радикал или боковая цепь.

Таким образом, индивидуальные свойства каждой из аминокислот определяются структурой её радикала. Повторите формулы 20 белковых аминокислот (рисунок 1.1) и их сокращённые обозначения (таблица 1.1).

Рисунок 1.1. Формулы аминокислот.

Сокращённое обозначение свободных аминокислот и их остатков в составе белков и пептидов

Название аминокислотного остатка

аспарагиновая кислота (аспартат)

глутаминовая кислота (глутамат)

Запомните, как можно классифицировать аминокислоты, основываясь на полярности их радикалов (рисунок 1.2).

АМИНОКИСЛОТЫ

с неполярными радикалами

[1]

с полярными радикалами

Радикалы – углеводороды алифатического или ароматического рядов с равномерным распределением электронной плотности:

,

,

,

В радикале присутствуют функциональные группы, содержащие электроотрицательные атомы кислорода, азота, серы, что вызывает неравномерное распределение электронной плотности в радикале.

Могут быть распределены на три подгруппы:

с полярными, но незаряженными радикалами:

с отрицательно заряженными радикалами:

с положительно заряженными радикалами:

В радикале присутствуют функциональные группы, не диссоциирующие при рН 7,0:

, ,

В радикале присутствуют функциональные группы, принимающие при рН 7,0 форму анионов:

В радикале присутствуют функциональные группы, принимающие при рН 7,0 форму катионов:

,

Рисунок 1.2. Классификация аминокислот, основанная на полярности их радикалов.

Обратите внимание, что полярные (заряженные и незаряженные) радикалы могут взаимодействовать с молекулами воды при помощи водородных связей. Поэтому они называются гидрофильными. Неполярные радикалы не взаимодействуют с молекулами воды, они называются гидрофобными.

В то же время неполярные радикалы аминокислот обладают большим сродством к органическим растворителям (гексан, хлороформ и т.д.), а аминокислоты с полярными радикалами растворяются в таких растворителях хуже.

Как вам известно из курса биоорганической химии, при взаимодействии α-карбоксильной группы одной аминокислоты с α-аминогруппой другой аминокислоты образуется пептидная (амидная) связь:

Соединения, в которых аминокислоты связаны при помощи пептидных связей, называются пептидами, а аминокислотные звенья пептидов – аминокислотными остатками. Аминокислотный остаток, имеющий свободную α-аминогруппу, называют N-концевым, а остаток, имеющий свободную α-карбоксильную группу, — С-концевым. Пептидные связи формируют первичную структуру белка – последовательность чередования аминокислот в полипептидной цепи.

Научитесь записывать структурные формулы пептидов. Запомните, что пептиды записываются и читаются с N-конца. Сначала пишется структура пептидного остова, например:

для трипептида;

для тетрапептида и так далее.

Затем к α-углеродным атомам присоединяют боковые радикалы, например, трипептид фен-глу-ала записывают следующим образом:

Определённые трудности вызывает написание пептидов, содержащих остатки пролина. В этом случае нужно иметь в виду, что радикал пролина присоединяется не только к α-углеродному атому, но и замещает атом водорода в α-аминогруппе. Например, пептид тре-гли-про записывается следующим образом:

Научитесь давать названия пептидам. Запомните, что все аминокислотные остатки, входящие в состав полипептида (кроме С-концевого), имеют окончание –ил вместо –ин (таблица 1.1). Таким образом, названия названия представленных выше пептидов следующие: фенилаланил-глутамил-аланин и треонил-глицил-пролин соответственно. Обратите внимание на то, что названия остатков некоторых аминокислот (асн, асп, глн, глу, три, цис) образуются не по общему правилу.

Запомните, что качественной реакцией на пептидную связь является биуретовая реакция. Вещества, содержащие не менее двух пептидных групп, образуют в щелочной среде с ионами Cu 2+ комплексное соединение фиолетового цвета.

Читайте так же:  После спортивной тренировки питание

Ход опыта. К 5 каплям 1%-ного раствора яичного белка добавляют 5 капель 10%-ного раствора гидроксида натрия и 2 капли 1%-ного раствора сульфата меди, пробирку встряхивают, и её содержимое приобретает фиолетовую окраску.

Обратите внимание, что интенсивность окрашивания пропорциональна содержанию белка в пробе, поэтому биуретовая реакция может быть использована для количественного определения белка в биологических жидкостях (например, в сыворотке крови).

Для обнаружения аминокислот, содержащих α-аминогруппы, используется нингидриновая реакция. При нагревании в присутствии нингидрина происходит окислительное дезаминирование α-аминогрупп аминокислот и пептидов, а молекула нингидрина при этом восстанавливается. Восстановленный нингидрин реагирует с аммиаком и другой молекулой окисленного нингидрина, в результате чего образуется окрашенный комплекс синего или сине-фиолетового цвета:

Видео (кликните для воспроизведения).

Ход опыта. К 5 каплям раствора α-аланина добавляют 2 капли 0,5%-ного водного раствора нингидрина и кипятят 1—2 минуты. В пробирке появляется розово-фиолетовое окрашивание, а с течением времени раствор синеет.

Нингидриновая реакция широко применяется в процессе хроматографического разделения аминокислот на бумаге и количественного определения аминокислот.

20 аминокислот формулы и названия

Для названия аминокислот используют три типа номенклатуры – тривиальную, рациональнцю и IUPAC.

По систематической номенклатуре (IUPAC) названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Нумерация углеродной цепи начинается с атома углерода карбоксильной группы.

По рациональной номенклатуре к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита.

Формулы и названия некоторых α-аминокислот, остатки которых входят в состав белков

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота.

20 аминокислот формулы и названия

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты аминокислоты: пролин.

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин и тирозин

— амидную группу: глутамин, аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

Читайте так же:  Креатин после срока годности

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

[3]

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Какие существуют заменимые и незаменимые аминокислоты

Виды аминокислот. Их особенности и назначение. Основные незаменимые и заменимые их разновидности.

О важности аминокислот для организма каждого человека написано миллионы статей и тысячи книг. И действительно, переоценить пользу органических соединений, которые, по сути, являются основой белковых молекул, весьма сложно. Чтобы лучше понять значение аминокислот для организма, достаточно усвоить один факт: по важности они на втором месте после воды.

При этом не все знают, что аминокислоты бывают двух видов – незаменимые и заменимые. Первые не могут синтезироваться нашим организмом (это значит, что получить такие соединения можно только с пищей). Вторые – могут синтезироваться из других аминокислот или поступающих в организм веществ. При этом у каждого элемента свои формулы и задачи.

Виды и особенности

На сегодня можно выделить 20 основных аминокислот. Из них 9 – незаменимые и 11 – заменимые аминокислоты. Рассмотрим некоторые из них подробнее.

Но это не все заменимые аминокислоты. Стоит выделить пролин (стимулирует синтез коллагена), глицин (участвует в построении мышечной ткани и помогает набрать мышечную массу), пролин (ускоряет заживление тканей), серин (поддерживает работу ЦНС и головного мозга) и тирозин (способствует восстановлению всего организма).

Читайте так же:  Аргинин в продуктах питания таблица

Итак, мы рассмотрели заменимые и незаменимые аминокислоты, необходимые каждому человеку для развития, крепкого здоровья и повышения спортивных показателей. Всего 20 химических соединений, и все они должны поступать в организм в полном объеме. Только так можно быть уверенным в результате и нормальном функционировании всех органов и систем. Удачи.

20 аминокислот формулы и названия

В таблице представлены важнейшие — аминокислоты, входящие в состав белков.

Таблица. Важнейшие α — аминокислоты

Сокращенное (трехбуквенное) название
аминокислотного остатка в
макромолекулах пептидов и белков.

20 аминокислот формулы и названия

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты.

В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты ) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.

Аминокислоты

— органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .

Аминокислоты

можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

[2]

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

Примером ароматической аминокислоты может служить пара -аминобензойная кислота:

Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Для α-аминокислот R-CH(NH2)COOH

Видео (кликните для воспроизведения).

, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Источники


  1. Голощапов, Б. Р. История физической культуры и спорта / Б.Р. Голощапов. — М.: Академия, 2015. — 320 c.

  2. Кермани, Кей Аутогенная тренировка. Эффективная техника расширения потенциала возможностей сознания и снятия стрессов / Кей Кермани. — М.: Эксмо-пресс, 2002. — 448 c.

  3. Стрэттон, Р. Американский питбультерьер. История. Стандарт. Содержание и уход. Разведение. Тренировки и воспитание. Поединки / Р. Стрэттон. — М.: Аквариум-Принт, 2006. — 256 c.
20 аминокислот формулы и названия
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here