Аминокислоты химические свойства применение

Сегодня предлагаем ознакомится со статьей на тему: аминокислоты химические свойства применение с профессиональным описанием и объяснением.

Аминокислоты химические свойства применение

4.3. Свойства аминокислот

Физические свойства . Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

H 2 N–CH 2 –COOH + HCl ® Cl — [H 3 N–CH 2 –COOH] +

Как карбоновые кислоты они образуют функциональные производные:

H 2 N–CH 2 –COOH + NaOH ® H 2 N–CH 2 –COO — Na + + H 2 O

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп e -аминокапроновой кислоты, в результате которого образуется e -капролактам (полупродукт для получения капрона):

Межмолекулярное взаимодействие трех a -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Аминокислоты химические свойства применение

Анализ белковых молекул

Для определения аминокислот, входящих в состав белка используют методы, основанные, как правило, на частичном или полном гидролизе полипептидной цепи. Обычно проводят кислотный или ферментативный гидролиз белка и аминокислоты анализируют различными хроматографическими методами. Таким способом можно установить количественный и качественный состав аминокислот, входящих в состав белка, но не их последовательность. Остановимся на некоторых химических способах анализа белковых молекул.

Свободные аминокислоты обнаруживают нингидринной реакцией (см. Нингидринная реакция). Эту же реакцию дают и белки, но в более жестких условиях – при кипячении с водным раствором нингидрина.

Для обнаружения пептидных связей в белках служит биуретовая реакция (реакция Пиотровского) – образование ярко-окрашенных комплексов при взаимодействии белков с гидроксидом меди (II) в присутствии щелочи. В эту реакцию вступают все пептиды, имеющие минимум две пептидные связи. Цвет комплекса, получаемый при биуретовой реакции с различными пептидами, несколько отличается и зависит от длины пептидной цепи. Пептиды с длиной цепи от четырех аминокислотных остатков и выше образуют красный комплекс, трипептиды – фиолетовый, а дипептиды – синий. Реакцию используют не только для качественного, но и для количественного определения белков.

Пептиды, содержащие ароматические и гетероароматические аминокислоты дают положительную ксантопротеиновую реакцию (реакция Мульдера) – появление желтого окрашивания при действии конц. азотной кислоты. При добавлении щелочи цвет смеси меняется на оранжевый.

Серосодержащие аминокислоты в составе белка определяют по образованию черного осадка сульфида свинца при нагревании с ацетатом свинца – сульфгидрильная реакция (реакция Фоля).

Триптофан обнаруживают при помощи реакции с п-диметиламинобензальдегидом в среде серной кислоты – реакция Эрлиха . Образующийся продукт конденсации имеет красно-фиолетовое окрашивание.

Определение С- и N-концевых аминокислот

N-Концевые аминокислоты определяют по реакции с 2,4-динитрофторбензолом или дансилхлоридом. Свободная аминогруппа N-концевой аминокислоты арилируется или ацилируется, белок гидролизуют, образовавшиеся N-(2,4-динитрофенил)- (А) или N-(5-диметиламинонафтил-1-сульфо)производные (Б) существенно отличаются по физико-химическим свойствам от остальных аминокислот, поэтому их легко отделяют и идентифицируют.

С-Концевые аминокислоты определяют методом Акароби – при нагревании пептида с гидразингидратом пептидные связи гидролизуются и образуется смесь гидразидов аминокислот. С-Концевая аминокислота не реагирует с гидразином, остается в свободном виде, ее выделяют и идентифицируют.

Удобным методом определения последовательности аминокислот (первичной структуры белка) является способ деградации полипептидной цепи с помощью фенилизотиоцианата (метод Эдмана). N-Концевые аминокислоты последовательно отщепляются от цепи в виде фенилтиогидантоинов и идентифицируются.

Аминокислоты химические свойства применение

Химические свойства аминокислот

Реакции по карбоксильной группе

Декарбоксилирование карбоновых кислот легко протекает, если в a-положении к карбоксилу находится электроноакцепторная группа как, например, СООН (см. главу Дикарбоновые кислоты), NO2, CCl3 и другие. В аминокислотах таким электроноакцептором служит аммониевая группа NH3 + . Реакцию осуществляют при нагревании a-аминокислот в присутствии солей Cu(II) и поглотителей углекислого газа (Ba(OH)2).

В живых организмах этот процесс протекает под действием ферментов – декарбоксилазы и пиридоксальфосфата и приводит к образованию биогенных аминов.

В присутствии окислителей дезаминирование не останавливается на стадии образования амина, протекает окисление аминогруппы до иминогруппы и последующий гидролиз с образованием альдегида.

Этерификация аминокислот спиртами катализируется газообразным хлороводородом. Образующиеся при этом аммониевые соли сложных эфиров аминокислот превращают в нейтральные соединения, действуя на них органическими основаниями, например, триэтиламином.

Читайте так же:  В состав молекулы белка входят аминокислоты

Наличие двух функциональных групп в молекуле аминокислоты обусловливает реакцию межмолекулярного ацилирования с образованием амидов. Образующаяся связь называется пептидной, а соединения – пептидами или полипептидами. (см. Белки).

Отношение аминокислот к нагреванию

Аминокислоты с различным взаимным расположением амино- и карбоксильных групп при нагревании ведут себя различно. α-Аминокислоты димеризуются и образуют циклические продукты дикетопиперазины. При этом протекает взаимное ацилирование аминогруппы одной молекулы аминокислоты карбоксильной группой другой молекулы.

γ -Аминокислоты при нагревании превращаются в лактамы – продукты внутримолекулярного ацилирования аминогруппы карбоксилом.

β-Аминокислоты отщепляют молекулу аммиака и дают α,β-непредельные кислоты.

Замыкание β-лактамного цикла происходит при взаимодействии β-аминокислот с дициклогексилкарбодиимдом (ДЦК).

Нингидринная реакция (реакция Руэманна)

При кратковременном нагревании α-аминокислот с нингидрином в воде наблюдается изменение окраски раствора с бесцветного на фиолетовый за счет образования нингидринного пигмента (пурпура Руэманна). Эта качественная реакция используется для визуальной идентификации a-аминокислот на тонкослойных и бумажных хроматограммах.

α-Аминокислоты образуют с катионами металлов внутрикомплексные соли. Например, глицин реагирует со свежеосажденным гидроксидом меди, давая синий раствор глицината меди.

Подобно ариламинам ароматические аминокислоты алкилируются, ацилируются и диазотируются по аминогруппе. Аналогично другим замещенным карбоновым кислотам, ароматические аминокислоты превращаются в сложные эфиры и амиды по карбоксильной группе. Обратим внимание на некоторые специфические свойства антраниловой кислоты, позволяющие использовать ее в органическом синтезе. Так, она является исходным соединением в одном из самых удобных методов генерации дегидробензола. Диазотирование антраниловой кислоты алкилнитритами дает цвиттер-ионную соль диазония, которая термически или фотохимически разлагается с образованием дегидробензола.

В промышленности из антраниловой кислоты синтезируют индиго – синий кубовый краситель.

Аминокислоты. Строение молекулы, свойства, применение

Аминокислоты – гетерофункциональные соединения, которые содержат две функциональные группы: аминогруппу – NH2 и карбоксильную группу – СООН, связанные с углеводородным радикалом.

Аминогруппа – NH2 определяет основные свойства аминокислот, так как способна присоединять к себе катион водорода за счет наличия свободной электронной пары у атома азота.

Группа– СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Аминокислоты – это амфотерные органические соединения.

Со щелочами они реагируют как кислоты.

С сильными кислотами – как основания-амины.

Аминогруппа в молекуле аминокислоты вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 0 С. Они растворимы в воде. В зависимости от состава радикала они могут быть сладкими, горькими или бесвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группы –NH – CO–. Высокомолекулярные соединения, содержащие большое число амидных фрагментов, называются полиамидами.

Полиамиды альфа аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипептиды. В таких соединениях группы –NH – CO– называются пептидными.

Аминокислоты, необходимые для построения белков организма, человек и животные получают с пищей.

Применяют: как лечебное средство, для производства синтетических волокон (капрон).

Часть 2. Выполните практическое задание.

Задача экспериментальная.

Даны вещества: многоатомный спирт глицерин и одноатомный спирт этанол. Как определить эти вещества?

Этанол горит голубоватым пламенем.

Качественная реакция на многоатомные спирты – это взаимодействие их со свежеприготовленным гидроксидом меди (II) в присутствии щелочи. Если данную реакцию провести для глицерина, многоатомного спирта, то образуется раствор ярко-синего цвета – глицерат меди (II).

Э Т А Л О Н

к варианту 17

Количество вариантов(пакетов) заданий для экзаменующихся:

Вариант № 17 из 25 вариантов

Время выполнения заданий:

Вариант № 17 45 мин.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9117 —

| 7229 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислоты химические свойства применение

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Читайте так же:  Витамин б12 в каких продуктах

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

Аминокислоты химические свойства применение

Аминокислоты – органические бифункциональные соединения, в состав которых входят две функциональные группы: карбоксильная – СООН и аминогруппа -NH2.

Аминокислоты – амфотерные соединения.

Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых один или несколько атомов водорода углеводородного радикала замещены аминогруппами.

В природе встречаются в основном α-аминокислоты, составляющих белки (кроме пролина). Они имеют общую формулу

где R – углеводородный радикал, который может содержать различные функциональные группы (-SH, –OH, –COOH, NH2) и кольца.

Специфичность каждой аминокислоты определяется строением радикала R.

Простейший представитель – H2N-CH2-COOH — аминоуксусная кислота (глицин).

Химические свойства аминокислот

Химическое поведение аминокислот определяется двумя функциональными группами -NН2 и –СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных – как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Реакции, обусловленные аминогруппой.С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН2–группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой. При участиикарбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при a-углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (-NO2, -СС13, -СООН, -COR и т.д.), поляризующий связь С®СООН, то у карбоновых кислот легко протекают реакции декарбоксилирования. Декарбоксилирование a-аминокислот, содержащих в качестве заместителя + NH3-группу, приводит к образованию биогенных аминов. В живом орга­низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

В лабораторных условиях реакцию осуществляется при на­гревании a-аминокислоты в присутствии поглотителей СО2, например, Ва(ОН)2.

При декарбоксилировании b-фенил-a-аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.

Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходитобразованиединитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Окислительно-восстановительные переходы имеют место в системе цистеин – цистин:

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все a-аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

Действие азотистой кислоты на алифатические аминокислоты приводит к образованию гидроксикислот, на ароматические — диазосоединений.

Образование гидроксикислот:

Реакция диазотирования:

Диазосоединение далее может реагировать по двум направлениям:

1. с выделением молекулярного азота N2:

2. без выделения молекулярного азота N2:

Видео удалено.
Видео (кликните для воспроизведения).

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света ( 400-800 нм). Ауксохромная группа

-СООН изменяет и усиливает окраску за счет π, π — сопряжения с π — электронной системой основной группы хромофора.

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды — дикетопиперазины:

валин (Val) диизопропильное производное

При нагревании b-аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

Читайте так же:  Протеин сколько можно набрать

β-аминовалериановая кислота пентен-2-овая кислота

Нагревание g- и d-аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

(4-амино-3-метилбутановая кислота) кислоты

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8238 —

| 7894 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Химическая структура и физико-химические свойства аминокислот (стереохимия, амфотерность, реакционная способность). Классификация аминокислот.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Аминокисоты- универсальные природные соединения, аминопроизводные соответствующих карбоновых кислот. Природных известно более 300, но только 20 из них генетически кодируемые и составляют основу пептидов и белков.

Физико-химические свойства:

1. Хорошо растворимы в воде за некоторым исключением. С увеличением углеродной R-группы растворимость в воде снижается, в спирте увеличивается.

2. Стериохимия аминокислот.

Природные аминокислоты являютcя 2-аминокарбоновыми кислотами (или α-аминокислотами, в отличие от β-аминокислот, такиx, как β-аланин и тaypин). У α-aминoкиcлoт при атоме C-2 (Cα) имеются четыре различных зaмecтитeля: каpбокcильнaя группа, аминогруппа, вoдopoдный атом и бокoвaя цепь R. Таким образом, вcе α-аминокислоты, кpoмe глицина, имеют асимметрический (хиральный) α-углеродный атом и cущeствуют в виде двух энантиомеров (L- и D-aминoкиcлoт). Пpотeиногенныe аминoкиcлoты oтноcятcя к L-ряду. D-Аминoкиcлоты вcтpeчaютcя в бaктepиях, например в сocтaвe муреинов, и в пептидных антибиотиках. На плоскости хиральные центры принято изoбpaжaть о помощью прoeкциoнныx формул, прeдлoжeнных Фишеpoм.

3. Амфоте́рность (от др.-греч. — «двойственный», «обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.

Величина рН, при которой суммарный заряд аминокислоты равен 0, называется изоэлектрической точкой. Для моноаминомонокарбоновых аминокислот она лежит в интервале 5,5-6,3, диаминомоно-карбоновых – больше 7, для дикарбоновых меньше 7. ИЭТ зависит от строения R-группы.

4. Реакционная способность:

Все α-аминокислоты могут вступать в реакции

— декарбоксилирования (образование аминов)

— дезаминирование (бразование карб. кислот)

-образование пептидной связи

Классификация аминокислот:

1. По способности радикалов к взаимодействию с Н 2О:

— неполярные (гидрофобные) — плохо растворимые;

— полярные (гидрофильные) незаряженные — хорошо растворимые;

[3]

2. По биологическому и физиологическому значению:

— незаменимые — не могут синтезироваться организмом из других соединений и целиком поступают с пищей (валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан);

— полузаменимые — образуются в недостаточном количестве в организме, поэтому частично поступают с пищей (аргинин, тирозин, гистидин);

— заменимые — синтезируются в организме (все остальные).

3. По функциональной принадлежности:

— алифатические монокарбоновые кислоты: глицин, аланин, валин, лейцин, изолейцин;

— алифатические оксиаминокислоты: серин, треонин;

— серосодержащие: цистеин, метионин;

— диаминомонокарбоновые: лизин, аргинин;

— моноаминодикарбоновые: глутаминовая кислота, глутамин;

— ароматические: фенилаланин, тирозин;

— гетероциклические: гистидин, триптофан;

4. По участию аминокислот в биосинтезе белка – протеиногенные и не протеиногенные

5.По оптической активности в плоскости поляризованного света : право, лево

6.По абсолютной конфигурации молекулы на L- и D- стериоизмеры.

7.В зависимости от положения аминогруппы по отношению к С2 (α-углеродный атом) на α- и β-аминокислоты.

32. Белки: уровни организации белковой молекулы, характеристика связей, стабилизирующих структуру белков. Денатурация белков. Ренатурация. Фолдинг белка. Шапероны.

Структурная организация белков

Полипептиды, состоящие более, чем из 50 аминокислотных остатков, относятся к белкам, или протеинам. Белки – это макромолекулы с молекулярной массой от нескольких тысяч до нескольких миллионов Da.

В структуре белковой молекулы выделяют 4 уровня его организации: первичная, вторичная, третичная и четвертичная структуры белка.

Размер белка может измеряться в числе аминокислотных остатков или в дальтонах(молекулярная масса), но из-за относительно большой величины молекулы масса белка выражается в производных единицах — килодальтонах (кДа).

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминоваякислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппа лизина и амидиновый остаток CNH(NH2) аргинина, в несколько меньшей степени — имидазольный остаток гистидина). Каждый белок характеризуется изоэлектрической точкой (pI) — кислотностью среды (pH), при которой суммарный электрический заряд молекул данного белка равен нулю и, соответственно, они не перемещаются в электрическом поле (например, при электрофорезе). В изоэлектрической точке гидратация и растворимость белка минимальны.

Читайте так же:  Из чего делают спортпит

Первичная структура — последовательность аминокислотных остатков в полипептидной цепи.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

· α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм [25] (на одинаминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Хотя α-спираль может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали;

· β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,34 нм на аминокислотный остаток [26] ) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин;

Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

· ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

· ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

· гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Приобретение пространственной структуры (сворачивание) белка – называется фолдинг. Фолдинг – это ферментативный процесс, протекающий сразу же после синтеза полипептида на рибосомах. В фолдинге принимают участие ферменты:

· аминопептидаза – катализирует отщепление N-концевой аминокислоты Мет;

· сигнальная пептидаза – катализирует отщепление сигнального пептида на N-конце;

· пептидил-пролил-цис/транс-изомераза – катализирует поворот цепи в точке включения Про на 180 о ;

· протеиндисульфид-изомераза – катализирует изомеризацию дисульфидных связей.

Помимо ферментов в фолдинге участвуют некаталитические белки, относящиеся к hsp-белкам (белкам теплового шока) – шапероны и шаперонины. Шапероны – это небольшие молекулы, состоящие из 1-2 полипептидных цепей, а шаперонины – крупные олигомерные структуры. Они помогают правильной сборке полипептидных структур; ингибируют образование неправильных связей при сворачивании цепи; препятствуют агрегации еще не сформировавшихся белков; переносят сформированные белки в различные компартменты клеток. Однако, шапероны и шаперонины не входят в состав образующихся белков и не участвуют в их функционировании.

Четвертичная структура белка – это ассоциированные между собой 2 и более субъединиц (протомеров) – полипептидных цепей, имеющих третичную структуру. Белки, имеющие четвертичную структуру – это олигомерные белки. Они делятся на:

· гомомерные – состоящие из одинаковых субъединиц (например, лактатдегидрогеназа 1 и 5 – 4 субъединицы, каталаза – 4 субъединицы);

· гетеромерные – состоящие из различных субъединиц (например, РНК-полимеразы – 5 различных субъединиц, протеинкиназа – 2 разные субъединицы, лактатдегидрогеназа 2,3 и 4 – 2 разные субъединицы).

Образование субъединичных белков происходит при помощи водородных связей, гидрофобных и ионных взаимодействий. Например, гемоглобин состоит из 4-х субъединиц двух видов полипептидных цепей: двух α- и двух β-цепей. Необходимо отличать крупные гетеромерные белки, состоящие из субъединиц, обладающих различными активностями (например, аденилатциклаза: рецепторная субъединица, сопрягающая субъединица, каталитическая субъединица) и мультиферментные комплексы

(например, пируватдегидрогеназный комплекс, комплекс синтетазы жирных кислот), образованные несколькими отдельными белками, обладающими различными функциями и способными функционировать отдельно друг от друга.

Аминокислоты, их состав и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение.

Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH2-CH2-COOH

Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH2— и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.

Физические свойства.

Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.

+ кислоты (проявляются основные свойства)

+основания
(Проявляются кислотные свойства)

+оксиды металлов

+аминокислоты – образование пептидов

Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.

Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту — при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.

Читайте так же:  Л карнитин в аптеке

Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.

Амины — это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь.

+кислоты (реакции по аминогруппе)

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы —NH2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.

Получение.

[2]

Восстановление нитросоединений – реакция Зинина

Применение.

Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.

Белки — как биополимеры. Строение, свойства и биологические функции белков.

Белки (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.

Структура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот . Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.

· Первичная структура — последовательность аминокислот в полипептидной цепи-линейно.

· Вторичная структура — закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.

· Третичная структура —упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.

Свойства

Белки являются амфотерными веществами, также как и аминокислоты.

Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.

Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.

Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.

Функции белков в организме

Каталитическая функция

Ферменты — группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки : трипсин, пепсин, амилаза, липаза.

Структурная функция

Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.

Защитная функция

Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.

Сигнальная функция

[1]

Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.

Транспортная функция

Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.

Запасающая функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.

Двигательная функция

Белки, осуществляющие сократительную деятельность это актин и миозин

1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения ( на примере полиэтилена).

Высокомолекулярные соединения (полимеры) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.

Мономер – это низкомолекулярное вещество из которого получают полимер.

Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.

Степень полимеризации – количество повторяющихся структурных звеньев.

Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.

Признаки реакции полимеризации:

1. Не образуется побочных веществ.

2. Реакция идет за счет двойных или тройных связей.

nСН2=СН2 → (-СН2-СН2-)n– реакция полимеризации этилена — образование полиэтилена.

Признаки реакции поликонденсации:

1. Образуются побочные вещества.

2. Реакция идет за счет функциональных групп.

Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.

Видео удалено.
Видео (кликните для воспроизведения).

Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.

Источники


  1. Жан-Паскаль, Кузен Диетические завтраки. Советы известных диетологов / Кузен Жан-Паскаль. — М.: Столица-Принт, 2015. — 567 c.

  2. Астамирова, Х. Альтернативные методы лечения диабета. Правда и вымысел / Х. Астамирова, М. Ахманов. — М.: Вектор, 2010. — 160 c.

  3. Муллаева, Н. Б. Конспекты-сценарии занятий по физической культуре для дошкольников / Н.Б. Муллаева. — М.: Детство-Пресс, 2018. — 160 c.
Аминокислоты химические свойства применение
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here