Аминокислоты их строение и биологическая роль

Сегодня предлагаем ознакомится со статьей на тему: аминокислоты их строение и биологическая роль с профессиональным описанием и объяснением.

Аминокислоты, их строение и химические свойства. Биологическая роль аминокислотп.

Аминокислоты – азотосодержащие органические соединения, содержащие аминогруппы –NH2 и карбоксильные группы –COOH.

Для синтеза белков представляют интерес αаминокислоты у которых аминогруппа находится у второго атома углерода.

Для аминокислот характерны реакции с участием двух функциональных групп.

1) Как основание реагируют с кислотами:

HOOC–CH2–NH2 + HCl

HOOC–CH2–N + H3Cl (или HOOCCH2NH2∙HCl)

основание кислота соль

2) Как кислота, реагирует со щелочами:

NH2–CH2–C–OH + OHNa

NH2CH2C–ONa + H2O

кислота O соль O

3) При одинаковом количестве NH2 и COOH групп раствор аминокислоты нейтрален, при неравенстве имеет кислый или основной характер.

В водном растворе может образовываться биполярный ион:

4) Взаимодействие аминокислот друг с другом:

H2N–CH2COOH + H2NCH–COOH

H2NCH2–C–N–CH–COOH + H2O

Эта реакция поликонденсации (с отщеплением H2O) составляет содержание процесса синтеза белковой молекулы. Звенья, образующие молекулы белка, соединены между собой пептидными связями. Из 20 аминокислот, соединённых между собой, состоят все белковые вещества. Часть из этих аминокислот организм человека способен выработать, другую часть (незаменимые аминокислоты) он получает, используя в пищу белковые вещества (мясо, бобовые и др.)

1) Добавки к пище;

2) Лекарственные средства (глицин);

3) Производство полиамидных материалов (капрон, нейлон);

Билет №4 (1)

Классификация химических реакций.

Химические реакции – это химические явления, сопровождающиеся образованием новых веществ.

1. По числу и составу исходных и образующихся веществ:

Химические свойства. Аминокислоты, строение, химические свойства.

Аминокислоты, строение, химические свойства.

Биологическая роль аминокислот.

Аминокислотами называются азотсодержащие органические вещества, молекулы которых содержат одновременно аминогруппу (–NH2) и карбоксильную группу (–COOH).

1. H2N – CH2 – COOH аминоуксусная, или аминоэтановая кислота (глицин)

2. H2N – CH2 – CH2 – COOH аминопропионовая, или аминопропановая кислота

3. H2N – (CH2)3 – COOH аминомасляная, или аминобутановая кислота

Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. NH2

α – аминопропионовая β — аминопропионовая

α-аминокислоты содержат аминогруппу у первого атома углерода, считая от карбоксильной группы, β – у второго, γ – у третьего, δ – у четвертого и т.д.

Физические свойства.

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Плавятся с разложением при температурах выше 250º С.

Химические свойства.

В молекулах аминокислот содержатся карбоксильные группы, обладающие кислотными свойствами, и аминогруппы, обладающие основными свойствами, т.е. аминокислоты – это амфотерные органические соединения.

1. Аминокислоты реагируют со щелочами с образованием соли и воды.

H2N – CH2 – COOH + KOH H2N – CH2 – COOK + H2O

Аминоуксусная кислота Аминоуксусно-кислый

2. Аминокислоты реагируют с кислотами с образованием соли.

HOOC – CH2 – NH2 + HCl HOOC – CH2 – NH3 + Cl –

3. Молекулы аминокислот реагируют друг с другом. Продуктом реакции является высокомолекулярное вещество, называемое полипептидом.

H2N – CH2 – COOH + H2N – CH2 – COOH H2N – CH2 – CO – NH – CH2 – COOH + H2O

При соединении n молекул аминокислот получается полипептид с формулой

В полипептиде остатки молекул аминокислот соединены между собой пептидными (амидными) связями ( – CO – NH – ) в пептидные цепи.

· Биологическая роль: α-аминокислоты необходимы для синтеза белков в живых организмах (более 20 α-аминокислот).

· Многие аминокислоты применяют в с/х для подкормки животных.

· В медицине аминокислоты применяют как лекарственные средства.

· Из некоторых аминокислот получают синтетические волокна. Например, из аминокапроновой кислоты получают полиамидное волокно капрон:

| следующая лекция ==>
Туалетное мыло получают из кислот, содержащих 10-16 атомов углерода в молекулах, а хозяйственное – из кислот, содержащих 17-21 атомов углерода. | Изомерия в органической химии очень распространена.

Дата добавления: 2016-05-05 ; просмотров: 3067 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Аминокислоты, входящие в состав белков, их строение и свойства. Биологическая роль аминокислот. Пептиды.

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В белках человека встречают только 20-АКСтроение и свойства аминокислот:Общая структурная особенность АК — наличие амино- и карбоксильной групп, соединённых с одним и тем же углеродным атомом. R — радикал аминокислот — в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение.. Классификация аминокислот по химическому строению радикаловПо химическому строению АК можно разделить на алифатические, ароматические и гетероциклические.

В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH2), тиольная (-SH), амидная (-CO-NH2), гидроксильная (-ОН) и гуанидиновая группы.

2. Распад гема. Схема процесса, место протекания. Понятия «прямой» и «непрямой» билирубин. Диагностическое значение определения билирубина в крови и моче. В норме содержание билирубина в плазме составляет 1.7 -17 мкмоль/л, 75% от него составляет «непрямой» билирубин.«Прямой» билирубин называется так потому, что он прямо взаимодействует с диазореагентом, будучи хорошо растворимым в воде.Не прямой билирубин гидрофобен, поэтому перед его измерением необходимо осадить альбумин, с которым он связан. Такой билирубин даёт цветную реакцию диазотирования только после осаждения альбумина.Гипербилирубинемия – повышение содержания билирубина в крови.При достижении концентрации билирубина в крови более 50 мкмоль/л он начинает диффундировать в ткани и окрашивает их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называется желтухой.

Читайте так же:  Л карнитин для чего он нужен мужчинам

Липопротеины (ЛП) плазмы крови, классификация по плотности и электрофоретической подвижности. Особенности строения и липидного состава. Основные аполипопротеины, их функции. Функции ЛП плазмы крови Место образования и превращения различных видов ЛП. Гиперлипопротеинемии. Дислипопротеинемии. Диагностическое значение определения липидного спектра плазмы крови.

Липопротеины высокой плотности (ЛВП)Транспорт холестерина от периферийных тканей к печени

Липопротеины низкой плотности (ЛНП)Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

Липопротеины промежуточной (средней) плотности ЛПП (ЛСП)Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

Липопротеины очень низкой плотности (ЛОНП)Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

ХиломикроныТранспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

БИЛЕТ 12.4Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания

Переваривание углеводов в ротовой полостиВ слюне присутствует гидролитический фермент α-амилаза (α-1,4-гликозидаза), расщепляющая в крахмале α-1,4-гликозидные связи. крахмал переваривается лишь частично с образованием крупных фрагментов — декстринов и небольшого количества мальтозы. Действие амилазы слюны прекращается в резко кислой среде Желудочный сок не содержит ферментов, расщепляющих углеводы. Переваривание углеводов в кишечнике

Панкреатическая α-амилазаЭтот фермент гидролизует α-1,4-гликозидные связи в крахмале и декстринах.Продукты переваривания — дисахарид мальтоза, α-Амилаза поджелудочной железы, так же, как α-амилаза слюны, действует как эндогликозидаза. Панкреатическая α-амилаза не расщепляет α-1,6-гликозидные связи в крахмале. Целлюлоза, проходит через кишечник неизменённой. Кроме того, в толстом кишечнике целлюлоза может подвергаться действию бактериальных ферментов и частично расщепляться с образованием спиртов, органических кислот и СО2. Сахаразо-изомальтазный комплексСахаразо-изомальтазный комплекс гидролизует сахарозу и изомальтозу, расщепляя α-1,2- и α-1,6-гликозидные связи. Кроме того, оба ферментных домена имеют мальтазную и мальтотриазную активности, гидролизуя α-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала). Гликоамилазный комплексЭтот ферментативный комплекс катализирует гидролиз α-1,4-связи между глюкозными остатками в олигосахаридах, действуя с восстанавливающего конца. β-Гликозидазный комплекс (лактаза)Лактаза расщепляет β-1,4-гликозидные связи между галактозой и глюкозой в лактозе.

Совместное действие всех перечисленных ферментов завершает переваривание пищевых олиго- и полисахаридов с образованием моносахаридов, основной из которых – глюкоза

Классификация аминокислот

БИОЛОГИЧЕСКАЯ ХИМИЯ

Методический материал для самоподготовки)

[2]

ТЕМА 1. СТРОЕНИЕ, КЛАССИФИКАЦИЯ

И БИОЛОГИЧЕСКАЯ РОЛЬ АМИНОКИСЛОТ

Задание:

1. Выучить предложенный теоретический материал.

2. Ознакомиться с вариантами контрольной работы по теме.

(Выполнение контрольной работы по этой теме проводится на первом лабораторном занятии в 6-м семестре, во время летней сессии).

Аминокислотный состав белков

Историческая справка.

Первая аминокислота – глицин была выделена в 1820 г. методом кислотного гидролиза желатины,полностью расшифрован аминокислотный состав белков в 1938 г., когда была идентифицирована последняя аминокислота – треонин (Имеются данные, что первым был выделен аспарагин из аспарагуса в 1806 г.).

Функции аминокислот.

В настоящее время известно более 300 аминокислот, они могут выполнять разные функции:

· входят в состав всех белков – их 20, и такие аминокислоты называют стандартными, или протеиногенными;

· входят в состав только редких, или определённых, белков (например, оксипролин, 5-оксилизин входят в состав коллагена; десмозин – в состав эластина);

· входят в состав других соединений (например, b-аланин входит в состав витамина В3, который необходим для синтеза КоА-SH);

· являются промежуточными метаболитами обменных процессов (например, орнитин, цитруллин);

· необходимы для синтеза биологически активных соединений, например, биогенных аминов, нейромедиаторов;

· необходимы для синтеза азотсодержащих соединений (полиаминов, нуклеотидов и нуклеиновых кислот);

· углеродный скелет аминокислот может использоваться для синтеза других соединений:

а) глюкозы – такие аминокислоты называются глюкогенными (большинство из протеиногенных);

б) липидов – кетогенными (вал, лей, иле, фен, тир);

· аминокислоты могут быть источником определенных функциональных групп – сульфатной (цистеин), одноуглеродных фрагментов (метионин, глицин и серин), аминогруппы (глутамин, аспарат).

Номенклатура аминокислот.

Аминокислоты – производные карбо-новых кислот, в молекуле которых атом водорода у С, стоящего в a-положении, замещён аминогруппой. Общая формула L-изомеров аминокислот:

Отличаются аминокислоты между собой функциональными группами в боковой цепи (R). Каждая аминокислота имеет тривиальное, рациональное и сокращенное трех- или однобуквенное обозначение, например, глицин, аминоуксусная, гли.

Тривиальное название чаще всего связано с источником выделения или свойствами аминокислоты:

· серин входит в состав фиброина шелка (от лат. serius – шелковистый),

· тирозин впервые выделен из сыра (от греч. tyros – сыр),

· глутамин выделен из клейковины злаковых (от лат. gluten – клей),

· цистин – из камней мочевого пузыря (от греч. kystis – пузырь),

· аспарагиновая кислота – ростков спаржи (от лат. asparagus – спаржа),

· глицин от греч. glykos – сладкий.

Рациональное название складывается исходя из того, что каждая аминокислота является производной соответствующей карбоновой кислоты.

Сокращенное обозначение используют для написания аминокислотного состава и последовательности аминокислот в цепи. В биохимии чаще всего применяют тривиальное и сокращенное обозначение.

Классификация аминокислот.

Существует несколько классификаций:

1) по химической природе боковой цепи (R),

[3]

2) рациональная классификация (по степени полярности радикала, по Ленинджеру),

Читайте так же:  Как пить аргинин в порошке

3) по способности синтезироваться в организме.

По химической природе боковой цепи (R)

все аминокислоты делятся на:

(содержат 1 -NH2 и 1 -СООН группы);

(содержат 1 -NH2 и 2 -СООН группы);

(содержат 2 -NH2 и 1 -СООН группы);

(содержат 2 -NH2 и 2 -СООН группы).

1) гомоциклические (фен, тир);

· аминокислоты (гис, три);

По Ленинджеру

(по способности радикала взаимодействовать с водой) все аминокислоты делят на 4 группы:

· неполярные, незаряженные (гидрофобные) – их 8: ала, вал, лей, иле, мет, фен, три, про;

· полярные, незаряженные (гидрофильные) – их 7: сер, тре, глн, асн, цис, тир, гли;

· отрицательно-заряженные – их 2: асп, глу;

· положительно-заряженные – их 3: гис, арг, лиз.

По способности синтезироваться в организме

аминокислоты могут быть:

· заменимыми, которые могут синтезироваться в организме;

· незаменимыми, которые не могут синтезироваться в орга-низме и должны поступать с пищей.

Понятие «незаменимые» относительно для каждого вида – у человека и свиней их 10 (вал, лей, иле, тре, мет, фен, три, арг, гис, лиз), у животных с четырехкамерным желудком – 2 серосодержащие (цис, мет), у птиц – 1 (гли).

Физико-химические свойства аминокислот:

1. Растворимы в воде (лучше растворимы положительно- и отрицательно заряженные аминокислоты, затем гидрофиль-ные, хуже – гидрофобные).

2. Имеют высокую точку плавления (обусловлено тем, что в кристаллическом виде находятся в виде биполярных ионов).

3. Обладают оптической активностью, которая обусловлена наличием асимметрического атома углерода(за исключением гли). В связи с этим аминокислоты:

Видео удалено.
Видео (кликните для воспроизведения).

· существуют в виде L- и D-стереоизомеров, но в состав белков высших животных входят в основном аминокислоты L-ряда; количество стереоизомеров зависит от количестваасимметрических атомов углерода и рассчитывается по формуле 2 n , где n – количество асимметрических атомов С;

· способны вращать плоскость поляризованного света вправо или влево; величина удельного вращения у разных аминокислот варьирует от 10 до 30 º .

4. Амфотерные свойства (аминокислоты, кроме гли, при физиологических значениях рН и в кристаллическом виде находятся в виде биполярных ионов). Величина рН, при которой суммарный заряд аминокислоты равен 0, называется изоэлектрической точкой. Для моноаминомонокарбоновых аминокислот она лежит в интервале 5,5-6,3, диаминомоно-карбоновых – больше 7, для дикарбоновых – меньше 7.

5. Химические свойства:

· кислотные свойства, обусловленные наличием карбоксильной группы;

· основные свойства, обусловленные наличием аминогруппы;

· свойства, обусловленные взаимодействием амино-

и карбоксильной групп между собой;

· свойства, обусловленные наличием функциональных групп в боковой цепи.

Аминокислоты их строение и биологическая роль

Известно около 200 природных аминокислот, но только 20 из них играют важнейшую роль в жизни человека. Эти аминокислоты называют протеиногеннымистроящими белки.

Первые аминокислоты были открыты в начале XIX века.

В пищевых продуктах наиболее распространены 22 аминокислоты.

В составе белков найдено 20 различных α-аминокислот (одна из них – пролин, является не амино- , а иминокислотой), поэтому их называют белковыми аминокислотами.

Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

Многие из них найдены только в определенных организмах, а некоторые – только в одном каком-либо организме.

Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты, животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей.

К заменимым относятся аминокислоты, присутствие которых в пище не обязательно для нормального развития организма. В случае их недостаточности они могут синтезироваться из других аминокислот или из небелковых компонентов. Аминокислоты валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин являются незаменимыми почти для всех видов животных.

[1]

Аминокислоты являются наиболее важной составной частью организма. Аминокислоты – строительные блоки, из которых строятся белковые структуры, мышечные волокна. Организм использует их для собственного роста, восстановления, укрепления и выработки различных гормонов, антител и ферментов.

Они содержатся в ядре, протоплазме и стенках клеток, где выполняют разнообразные функции жизнедеятельности.

Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.

Некоторые аминокислоты служат посредниками при передаче нервных импульсов.

С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний, сопровождающихся серьезными проблемами в развитии организма.

Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков.

Аминокислоты обеспечивают:

— основные метаболические процессы: синтез и утилизация витаминов, липотропное (жиромобилизующее) действие, гликолиз и гликонеогенез;

— процессы детоксикации организма, в том числе при токсикозе беременных; — формирование иммунной системы организма;

— энергетические потребности клеток и, прежде всего, мозга, участвуют в образовании нейромедиаторов, обладают антидепрессантной активностью, улучшают память;

— метаболизм углеводов, участвуют в образовании и накоплении гликогена в мышцах и печени, обеспечивают наращивание мышечной массы, cнижают утомляемость, улучшают работоспособность;

— стимулируют работу гипофиза, увеличивают выработку гормона роста, гормонов щитовидной железы, надпочечников;

— участвуют в образовании коллагена и эластина, способствуют восстановлению кожи и костной ткани, а также заживлению ран;

Читайте так же:  Л карнитин капсулы инструкция

— принимают участие в кроветворении, и, прежде всего, в выработке гемоглобина.

Интересно знать

Во время беременности повышается потребность женского организма в триптофане и лизине, у грудных детей – в триптофане и изолейцине.

Особенно увеличивается потребность организма в незаменимых аминокислотах после больших потерь крови, ожогов, а также вовремя других процессов, сопровождаемых регенерацией тканей.

Для птиц незаменимой аминокислотой является глицин.

У жвачных животных биосинтез всех незаменимых аминокислот производится микроорганизмами кишечного тракта.

Для человека высокую «биологическую ценность» имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат незаменимые аминокислоты не только в достаточном количестве, но и в необходимом для человека соотношении.

Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). В белке соевой муки мало метионина, в кукурузе – лизина и триптофана.

Признаки недостаточности аминокислот в организме

При недостаточном количестве аминокислотных соединений в организме формируется дисбаланс белкового обмена, в результате которого недостающие элементы «извлекаются» из соединительной ткани, мышц, крови и печени.

В первую очередь высвобожденные белки используются для питания мозга и обеспечения работы сердечно-сосудистой системы.

Расходуя собственные аминокислоты и не получая их с пищей, организм начинает слабеть и истощаться, это приводит к сонливости, выпадению волос, анемии, потере аппетита, ухудшению состояния кожи, задержке роста и умственному развитию.

2 Аминокислоты, входящие в состав белков, их строение и свойства. Биологическая

роль аминокислот. Пептиды.

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В белках человека встречают только 20-АК.

А. Строение и свойства аминокислот

1. Общие структурные особенности аминокислот, входящих в состав белков

Общая структурная особенность АК — наличие амино- и карбоксильной групп, соединённых с одним и тем же углеродным атомом. R — радикал аминокислот — в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение.

В водных растворах при нейтральном значении рН — АК существуют в виде биполярных ионов.

В отличие от 19 остальных — АК, пролин — Иминокислота, радикал которой связан как с углеродным атомом, так и с аминогруппой, в результате чего молекула приобретает циклическую структуру.

19 из 20 АК содержат в α-положении асимметричный атом углерода, с которым связаны 4 разные замещающие группы. В результате эти АК в природе могут находиться в двух разных изомерных формах — L и D. Исключение составляет глицин, который не имеет асимметричного α-углеродного атома, так как его радикал представлен только атомом водорода. В составе белков присутствуют только L-изомеры аминокислот.

Чистые L- или D-стереоизомеры могут за длительный срок самопроизвольно и неферментатив-но превращаться в эквимолярную смесь L- и D-изомеров. Этот процесс называют рацемизацией. Рацемизация каждой L-аминокислоты при данной температуре идёт с определённой скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, в твёрдой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст обследуемого.

Все 20 АК в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к α-углеродному атому.

2. Классификация аминокислот по химическому строению радикалов

По химическому строению АК можно разделить на алифатические, ароматические и гетероциклические.

В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH2), тиольная (-SH), амидная (-CO-NH2), гидроксильная (-ОН) и гуанидиновая

группы.

Названия аминокислот можно построить по заместительной номенклатуре, но обычно используют тривиальные названия.

3. Классификация аминокислот по растворимости их радикалов в воде

АК с неполярными R: радикалы, имеющие алифатические углеводородные цепи (радикалы ала, вал, лей, изо, про и мет) и ароматические кольца (радикалы фен и три).

АК с полярными незаряженными R: эти радикалы лучше, чем гидрофобные радикалы, растворяются в воде, т.к. в их состав входят полярные функциональные группы, образующие водородные связи с водой. К ним относят сер, тре и тир, имеющие гидроксильные группы, асн и глн, содержащие амидные группы, и цис с его тиольной группой.

Цистеин и тирозин содержат соответственно тиольную и гидроксильную группы, способные к диссоциации с образованием Н + , но при рН около 7,0, поддерживаемого в клетках, эти группы практически не диссоциируют.

АК с полярными отрицательно заряженными R: относят асн и глн аминокислоты, имеющие в радикале дополнительную карбоксильную группу, при рН около 7,0 диссоциирующую с образованием СОО — и Н + . Следовательно, радикалы данных аминокислот — анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

АК с полярными положительно заряженными R:

α-Аминокислоты могут ковалентно связываться друг с другом с помощью пептидных связей. Пептидная связь образуется между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой, т.е. является амидной связью. При этом происходит отщепление молекулы воды.

1. Строение пептида. Количество аминокислот в составе пептидов может сильно варьировать. Пептиды, содержащие до 10 аминокислот, называют олигопептиды. Часто в названии таких молекул указывают количество входящих в состав олигопептида аминокислот: трипептид, пентапептид, окгапептид и т.д.

Читайте так же:  Витамин б в таблетках название

Пептиды, содержащие более 10 аминокислот, называют «полипептиды», а полипептиды, состоящие из более чем 50 аминокислотных остатков, обычно называют белками. Однако эти названия условны, так как термин «белок» часто употребляют для обозначения полипептида, содержащего менее 50 аминокислотных остатков. Например, гормон глюкагон, состоящий из 29 аминокислот, называют белковым гормоном.

Мономеры аминокислот, входящих в состав белков, называют «аминокислотные остатки». Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную α-карбоксильную группу — С-концевым и пишется справа. Пептиды пишутся и читаются с N-конца. Цепь повторяющихся атомов в полипептидной цепи -NH-CH-CO-носит название «пептидный остов».

При названии полипептида к сокращённому названию аминокислотных остатков добавляют суффикс -ил, за исключением С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как серилглицилпролилаланин.

Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей, так как атом азота пептидной группы связан не с водородом, а с радикалом.

Пептиды различаются по аминокислотному составу, количеству и порядку соединения аминокислот

3 Первичная структура белков. Пептидная связь, ее характеристика (прочность, кратность, компланарность, цис- ,транс- изомерия). Значение первичной структуры для нормального функционирования белков (на примере гемоглобина S).

Первичная структура — понятие, обозначающее последовательность амино­кислотных остатков в белке Пептидная связь — основной вид связи, опреде­ляющий первичную структуру Возможно и присутствие дисульфидных связей между двумя остатками цистеина в одной полипептидной цепи с образованием цистина Такая же связь (дисульфидный мостик) может возникать и между остатка­ми цистеина, принадлежащими разным полипептидным цепям в белковой молекуле, сополимерном образовании.

Аминокислотные остатки в пептидной цепи белков чередуются не случайным образом, а расположены в определённом порядке. Линейную последовательность аминокислотных остатков в полипептидной цепи называют «первичная структура белка».

Первичная структура каждого индивидуального белка закодирована в участке ДНК, называемом геном. В процессе синтеза белка информация, находящаяся в гене, сначала переписывается на мРНК, а затем, используя мРНК в качестве матрицы, на рибосоме происходит сборка первичной структуры белка.

Каждый из 50 000 индивидуальных белков организма человека имеет уникальную для данного белка первичную структуру. Все молекулы данного индивидуального белка имеют одинаковое чередование аминокислотных остатков в белке, что в первую очередь отличает данный индивидуальный белок от любого другого

Биологическая роль аминокислот и их применение

Какова биологическая роль аминокислот? Попробуем вместе найти ответ на этот вопрос. Выявим особенности строения данного класса органических веществ, их химические свойства, основные области применения.

Исторические сведения

Первой открытой аминокислотой был глицин. Его синтезировали в 1820 году путем кислотного гидролиза желатина. Расшифровать аминокислотный состав белковых молекул удалось только к середине прошлого века, именно тогда была выявлена аминокислота – треонин.

Основные функции

На данный момент имеется информация о 300 аминокислотах, выполняющих в организме различные функции.

Какова основная биологическая роль аминокислот? Двадцать из них считают стандартными (протеиногенными), поскольку именно они входят в состав основных белковых молекул.

Эти соединения входят в состав определенных белков. Оксиприлин является основой коллагена, эластин образуется десмозином.

Они могут быть промежуточными веществами в обменных процессах. Такую функцию выполняет цитруллин, орнитин.

Биологическая функция аминокислот также состоит в синтезе нуклеотидов, полиамидов. Углеродная цепочка этих соединений используется для образования иных органических веществ:

  • глюкоза синтезируется из глюкогенных аминокислот;
  • липиды образуются кетогенными соединениями.

Биологическая роль аминокислот заключается в возможности их использования для определения функциональных групп. Цистеин применяют при выявлении сульфатной группы. Аспарат используется при выявлении аминогруппы.

Особенности номенклатуры

Как правильно назвать аминокислоты? Строение, классификация, биологическая роль этих соединений рассматриваются даже в курсе школьной программы.

Аминокислоты являются производными карбоновых кислот, в составе которых один атом водорода замещается аминогруппой.

В зависимости от расположения этой функциональной группы, у одного соединения может существовать несколько изомеров. Химики используют сразу три разных номенклатуры: рациональную, тривиальную, систематическую.

Тривиальные названия данных соединений связаны с тем источником, из которого они были выделены. Серин включен в состав фиброина шелка, глутамин обнаружен в клейковине злаковых растений. Цистин присутствует в камнях мочевого пузыря.

Рациональное название связано с производной карбоновой кислоты, а сокращенное обозначение применяют при указании последовательности расположения аминокислот в белковой молекуле. В биохимии пользуются сокращенными и тривиальными названиями этих соединений.

Классификация аминокислот

Для того чтобы понять, какова биологическая роль аминокислот и их применение, остановимся подробнее на видах классификации этих органических соединений.

В настоящее время используется несколько видов классификации:

  • по радикалу;
  • по степени его полярности;
  • по варианту синтеза в организме.

По строению радикала в органической химии выделяют разные виды аминокислот.

Алифатические соединения могут содержать по одной карбоксильной и аминогруппе, в таком случае они являются моноаминокарбоновыми соединениями.

При наличии двух СООН и одной аминогруппы вещества называют моноаминодикарбоновыми веществами.

Также выделяют диаминомонокарбоновые и диаминодикарбоновые формы аминокислот.

Циклические виды отличаются не только количеством циклов, но и их качественным составом.

По Ленинджеру, аминокислоты подразделяют на четыре группы по особенностям взаимодействия углеводородного радикала с водой:

  • гидрофобные;
  • гидрофильные;
  • отрицательно — заряженные;
  • положительно-заряженные.

В зависимости от способности аминокислот синтезироваться в человеческом организме выделяют незаменимые (поступают с пищей), а также заменимые виды.

Читайте так же:  Аминокислоты строение и функции

Многочисленными научными экспериментами была доказана биологическая роль альфа-аминокислот.

Физические свойства

Чем характеризуются аминокислоты? Номенклатура, свойства, биологическая роль этих соединений предлагается выпускникам школ на едином государственном экзамене по химии. Эти органические кислоты хорошо растворяются в воде, обладают высокой точкой плавления.

Их оптическая активность объясняется присутствием в молекулах асимметричного углеродного атома (исключением является только глицин). Именно поэтому были обнаружены L- и D-стереоизомеры аминокислот.

Изомеры L-ряда обнаружены в составе белков животных. Величина водородного показателя для этих соединений находится в диапазоне 5,5-7.

Химические свойства

Рассмотрим подробнее аминокислоты. Строение, химические свойства, биологическая роль этих органических веществ необходимо знать.

Специфика химических свойств аминокислот заключается в их двойственности. Причиной амфотерности является наличие двух функциональных групп в составе этих органических кислот.

Присутствие карбоксильной группы СООН придает этим соединениям кислотный характер. Они легко вступают во взаимодействие с активными металлами, основными оксидами, щелочами. Также кислотность свойств этих органических соединений проявляется в реакции этерификации (со спиртами образуют эфиры).

Аминокислоты могут также вступать в химическое взаимодействие с солями, образованными слабыми минеральными кислотами. В качестве примера такой реакции можно рассматривать взаимодействие аминокислот с гидрокарбонатами и карбонатами.

Основные свойства данного класса заключаются в способности аминокислот реагировать с другими кислотами по аминогруппе. При этом образуются соли.

Биологическая роль декарбоксилирования аминокислот в том, что образуется нейтральная среда, которая абсолютно безопасна для живого организма.

Нингидриновая реакция позволяет выявлять в растворе аминокислот. Суть реакции заключается в том, что бесцветный раствор нингидрина при взаимодействии с аминокислотой, будет конденсироваться в форме димера через атом азота, который отщепляется от аминогруппы соответствующей кислоты.

Получаемый пигмент имеет красно-филолетовый оттенок, кроме того, происходит декарбоксилирование аминокислоты, в результате которого образуется определенный альдегид и оксид углерода (4).

Именно нингидриновая реакция используется биологами при анализе первичной структуры белковых молекул. По интенсивности окраски можно выявить количественное содержание аминокислот в исходном растворе, поэтому подобный анализ уместен при выявлении концентрации аминокислот.

Специфические реакции

В аминокислотах, кроме карбоксильной и аминогруппы, могут содержаться дополнительные функциональные группы. Для их определения в научно-исследовательских лабораториях проводят качественные реакции.

Аргинин можно выявить в смеси путем осуществления качественной реакции Сакагучи (на гуанидиновую группу). Цистеин можно определить методом Фоля, специфичным для SH-группы.

Реакция нитрования (ксантопротеиновая реакция) дает возможность подтверждать присутствие в смеси ароматической аминокислоты. Реакция Миллона предназначена для выявления гидроксильной группы в ароматическом кольце тирозина.

Особенности пептидной связи

Чем характеризуются серосодержащие аминокислоты? Их биологическая роль связана с образованием молекул пептидов. При взаимодействии между собой нескольких молекул аминокислот, происходит отщепление молекул воды, а остатки аминокислот с помощью пептидной (амидной) связи образуют пептиды.

Число аминокислотных остатков, образующих полипептид, существенно варьируется. Те пептиды, которые содержат не более десяти аминокислотных остатков, именуют олигопептидами. В названии образующегося соединения часто указывают количество аминокислотных остатков.

Если в составе вещества содержится больше десяти аминокислотных остатков, соединения называют полипептидами. Для тех соединений, в составе которых больше пятидесяти остатков аминокислот, продукт их синтеза называют белком.

Так, гормон глюкаген, в составе которого есть 29 аминокислот, биологи называют гормоном. Аминокислотными остатками считают мономеры исходных органических кислот, из которых образуются белковые соединения.

Тот остаток аминокислоты, который записывается слева, имеет аминогруппу, называют N-концевым, фрагмент, обладающий карбоксильной группой, считают С-концевым, его принято записывать справа.

При наименовании полученного полипептида используют сокращенные названия аминокислот, из которых он образуется. Например, если во взаимодействии принимали участие глицин, серин, аланин, получаемый трипептид будет читаться как глицилсерилаланин.

Значимость некоторых аминокислот

Глицин (аминоуксусная кислота) является донором углеродных фрагментов, которые нужны для образования гемоглобина, пиррола, холина, нуклеотидов, а также для синтеза креатина.

Серин присутствует в составе активных центров ферментов. Эта аминокислота нужна для процесса синтеза фосфопротеина (казеина натурального молока).

Глюкогенная кислота нужна для формирования вторичной, третичной структуры белковой молекулы. В этом соединении есть самая реакционно-активная функциональная группа, поэтому вещество легко вступает в окислительно-восстановительные процессы, связывает тяжелые металлы в виде нерастворимых соединений. Именно она выполняет функцию донора сульфатной группы, востребованной для синтеза серосодержащих веществ.

Заключение

Видео удалено.
Видео (кликните для воспроизведения).

Аминокислоты являются амфотерными органическими соединениями, имеющими важное биологическое значение. Именно аминокислотные остатки в процессе синтеза образуют последовательность, которая является первичной структурой белковой молекул. В зависимости от того, как именно выстроятся аминокислотные фрагменты, синтезируется белок, специфичный для каждого живого организма.

Источники


  1. Ингерлейб, М. Все дыхательные гимнастики. Для здоровья тех, кому за… / М. Ингерлейб. — М.: Эксмо, 2013. — 320 c.

  2. Ткаченко, Т.А. Веселая гимнастика в стихах и картинках. Играем и развиваемся / Т.А. Ткаченко. — М.: Эксмо, 2012. — 863 c.

  3. Стрельникова, Наталья Как победить диабет. Еда и природные средства / Наталья Стрельникова. — М.: Веды, Азбука-Аттикус, 2011. — 160 c.
Аминокислоты их строение и биологическая роль
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here