Аминокислоты которые синтезируются в организме называются

Сегодня предлагаем ознакомится со статьей на тему: аминокислоты которые синтезируются в организме называются с профессиональным описанием и объяснением.

Сколько всего аминокислот, входящих в состав молекулы белка

Приветствую вас, друзья мои! Сегодня я хотела бы поговорить с вами вот на тему сколько всего аминокислот существует. И какие нужны для нашего организма? Дело в том, что многие мои подруги стали поклонницами монодиет. Я хотела бы доказать, что не от всего можно отказаться. Исключение некоторой части продуктов негативно влияет на нашу красоту.

Виды аминокислот

Белки являются незаменимыми питательными веществами в любой здоровой диете. Все белки состоят из строительных блоков, называемых аминокислотами. Это вроде кирпичиков для строительства дома. Но не все белки в своем рационе содержат аминокислоты, которые нам необходимы.

Если вы посмотрите на белок под микроскопом, он будет выглядеть в виде цепочки из аминокислот, соединенных пептидной связью. В организме человека органические кислоты играют роль кирпичиков, из которых создается и ремонтируется мышечная ткань, волосы и кожа.

Еще десятки лет назад ученые знали только три-четыре вещества. Сейчас известно, что существует более 200 органических кислот. В последние годы находят еще большее применение для аминокислотных функций. Например, кератин, содержащийся в наших волосах и ногтях помогает разработать соединение, используемое в виде биоразлагаемого пластика.

Однако для стабильной жизнедеятельности организма нужно 22 протеиногенные аминокислоты, которые разделяются по категориям:

  • заменимые – самостоятельно синтезируются в нашем организме;
  • незаменимые – поступают извне (продукты, пищевые добавки).
Незаменимые Заменимые
  • Аргинин*
  • Гистидин*
  • Изолейцин
  • Лейцин
  • Лизин
  • Метионин
  • Фенилаланин
  • Треонин
  • Триптофан
  • Валин
  • Серин
  • Тирозин
  • Аланин
  • Аспарагин
  • Аспарагиновая кислота (аспартат)
  • Цитрулин
  • Цистеин
  • Глицин
  • Глютаминовая кислота
  • Пролин
  • Серин
  • Глутамин

Эта классификация не лишена недостатков. Например, аргинин может создаваться в нашем организме, считаясь заменимой кислотой. Только с некоторыми особенностями метаболизма и в некоторых физиологических состояниях приравнивается к незаменимым.

СТАТЬИ ПО ТЕМЕ:

Также и гистидин, который синтезируется, только в не больших количествах. Поэтому его необходимо употреблять с едой.

Незаменимые

Этот вид веществ не может синтезироваться в теле человека самостоятельно. Поэтому необходимо получать их из еды. Больше всего их содержат белки животного происхождения. Если организм чувствует нехватку какого-либо элемента, то начинает потреблять из других источников. Например, из мышечной ткани. Основной упор делается на функционирование двух органов – мозга и сердца. Чаще всего — в ущерб остальным. Более подробно вы можете прочесть в моей статье про незаменимые аминокислоты для человека. Сейчас же я сделаю беглый обзор.

Только три аминокислоты (изолейцин + лейцин + валин) составляют почти 70% всех органических кислот в организме. Поэтому их значение в организме человека настолько высоко. В спортпитании есть даже специальный BCAA комплекс, содержащий эти три компонента.

Лейцин участвует в защите и восстановлении мышц, костей, кожных покровов. Благодаря ему выделяется гормон роста. Управляет уровнем сахара и помогает сжиганию жира. Содержится в бобовых, мясе, орехах, рисе (нешлифованном) и зернах пшеницы. Благодаря своей способности стимулировать синтез белка, лейцин помогает стимулировать наращивание мышечной массы и способствует жиросжиганию. Лучшие пищевые источники лейцина, включают любой белок из животных, которые, естественно, содержат все незаменимые аминокислоты.

Изолейцин существует в белках и ускоряет выработку энергии. Его очень «любят» спортсмены. После изнурительных тренировок помогает быстрой регенерации мышечной ткани. Снимает неприятный болевой синдром. Участвует в образовании гемоглобина, регулирует количество глюкозы. Источники: мясные и рыбные продукты, яйца, орехи, горох, соя. В спортивном питании содержится в BCAA концентратах.

Лизин необходим для работы иммунной системы. Его задача – синтезировать антитела, которые станут защищать организм от «вторжения» аллергенов и вирусов. Еще он контролирует процессы обновления костей и коллагена. Управляет гормонами роста. В природе находим в кисломолочных продуктах, картошке, яйцах, красном мясе, рыбке.

Фенилаланин – это основа основ для нормальной работы центральной нервной системы. Наличие альфа-аминокислоты в организме человека избавляет от приступов депрессии и хронической боли. Влияет на способность концентрироваться и запоминать. Препараты на основе вещества используются при лечении психических заболеваний и болезни Паркинсона. Улучшает работу поджелудочной железы, печени.

Метионин – это вообще серьезный «боец». Активно перерабатывает и сжигает жиры. Участвует в образовании некоторых заменимых аминокислот. Наличие элемента влияет на нашу выносливость, работоспособность. Его недостаток сразу станет заметен по ногтям и коже. Встречается в природе: мясных и рыбных продуктах, бобовых, семечках, луке, чесноке, йогурте.

[3]

Треонин содержат белки, отвечающие за все системы организма: ЦНС, иммунную, сердечнососудистую. Без него начнутся проблемы с костями и зубами. Если у вас сбалансированная диета, то дефицит не грозит. Получаем из молочки, мяса, грибов, зеленых овощей и зерна.

Триптофан — это «серьезное» вещество. Оно необходимо человеку и несет ответственность за образование серотонина. Недостаток отвратительно сказывается на сне, настроении и аппетите. Регулирует артериальное давление, функцию дыхания. Высокое содержание аминокислоты: морепродукты, красное мясо, домашняя птица, пшеница, кисломолочка.

Валин существует для восстановления поврежденных тканей и обменных процессов в мышцах. При тяжелых нагрузках оказывает стимулирующее действие. Участвует в умственной деятельности. Необходим при терапии разрушения печени и головного мозга от алкогольных, наркотических веществ. Получить можем из мяса, молочных продуктов, грибов, сои, арахиса.

Такие элементы образуются в организме человека из других элементов. Но не думайте, что они возникают сами по себе. Их присутствие в продуктах питания крайне необходимо. Итак, разбираемся, сколько всего аминокислот заменимых.

Аланин ускоряет метаболизм углеводов. Помогает выведению токсических веществ из печени. Встречается в молочке, мясе, птице, рыбных продуктах, яйцах.

Аспарагиновая кислота принимает участие в синтезе других аминокислот. Это универсальное топливо, которое улучшает обменные процессы в нашем теле. В природе встречаем элемент в тростниковом сахаре, молоке, мясе домашней птицы и говядине.

Читайте так же:  Крема с аминокислотами для лица

Аспарагин нужен для работы нервной системы. Находится во всех продуктах животного происхождения, а также орехах, зерне, картофеле.

Гистидин существует в белках всех органов. Он активно принимает участие в образовании кровяных телец (красных и белых). Иммунитет нуждается в этом элементе. Положительно влияет на половую функцию, увеличивая влечение. Однако запасы вещества быстро истощаются. Вот почему нужно получать его из внешних источников: мясо, зерно, молоко.

Серин отвечает за работу головного мозга и ЦНС. Встречаем в мясомолочных продуктах, сое, пшенице, арахисе.

Цистеин несет ответственность за синтез кератина. Без него можно было бы забыть о красивых волосах, ногтях и коже. В естественном виде находим в мясе, яйцах, красном перце, луке, чесноке и брокколи.

Аргинин – одна из самых важных аминокислот в организме человека. Он «заведует» правильным функционированием суставов, мышц, кожных покровов, печени. Укрепляет иммунитет. Благодаря активным процессам, происходит быстрое сжигание жировой ткани. Часто применяется в составе пищевых добавок бодибилдерами или худеющими. В естественном виде встречается в мясомолочных продуктах, орехах, зерновых (овес, пшеница), желатине.

Глютаминовая кислота играет основную партию в работе головного и спинного мозга. Входит в добавку глутамат натрия. В аптеке продают глутаминовую кислоту. Мне ее даже гинеколог назначала. Находим эту аминокислоту в мясомолочных продуктах, яйцах, морской рыбке, морковке, помидорах, кукурузе и шпинате.

Глутамин существует в белках для создания и поддержания мышц. Используется как топливо головного мозга. Вещество необходимо человеку для выведения всякой гадости из печени. Самое неприятное, что в результате приготовления оно разрушается. Поэтому жуйте, друзья мои, петрушечку и шпинат в сыром виде.

Глицин нужен для заживления ран и переработки глюкозы в энергию. Отличными источниками станут все белковые продукты: мясо, рыба, молоко, бобы.

Пролин содержат белки, ответственные за образование коллагена. Без него начнутся проблемы с суставами. Вегетарианцы постоянно сталкиваются с нехваткой этого вещества. В природе находим в животных продуктах.

Тирозин отвечает за работу всего организма. В его «компетенции» регулировать артериальное давление, аппетит. Недостаток чреват повышенной утомляемостью. Источником станут семечки, орехи, бананы, авокадо.

Итак, мои хорошие, мы разобрались сколько всего аминокислот существует и что же это такое. Я не утверждаю, что нужно килограммами уплетать картошку или мясо. Просто не лишайте тело нужной энергии. А себя красоты. Подписывайтесь на рассылку. До встречи!

PS: думаю, вам будет интересно в каких продуктах питания содержатся аминокислоты и сколько?

Обмен аминокислот

Аминокислоты являются «строительными блоками» белков. Белки, что в переводе с греческого означает «первостепенного значения», в свою очередь, являются строительными элементами целого ряда структур. К ним, например, относятся гормоны, энзимы и мышцы.

Основной функцией белка является рост и обновление тканей организма (анаболизм). Белки также могут быть использованы в качестве энергии при катаболических реакциях (распад тканей), к которым относится, например, глюконеогенез — процесс образования глюкозы из аминокислот, молочной кислоты, глицерина или пирувата в печени или почках.

В проводимом нами изучении белков и аминокислот мы расскажем о метаболизме потребляемого нами белка, диетическом белке и катаболических процессах в организме. Общее понимание молекулярной структуры белков и аминокислот необходимо для понимания их метаболизма.

Структура белков и аминокислот

В состав белков входят углерод, водород, кислород и, самое главное, азот. Также они могут содержать серу, кобальт, железо и фосфор. Эти элементы являются «строительными блоками» белков, аминокислотами. Молекула белка состоит из длинных цепочек аминокислот, связанных амидными или пептидными связями.

Белок, потребляемый нами с пищей, содержит самые разные аминокислоты. Существует почти бесконечное сочетание аминокислотных цепочек. Комбинация аминокислот определяет свойства белков.

Как сочетание аминокислот влияет на определенные свойства белков, так и структура отдельных аминокислот определяет их функцию в организме. Аминокислота состоит из центрального атома углерода, положительно заряженной аминогруппы (NH2) на одном конце и отрицательно заряженной карбоксильной группы на другом (COOH). Функция аминокислоты обусловлена боковой группой (R-). У различных аминокислот боковая цепь отличается.

Нашему организму необходимы 20 различных аминокислот. Эти аминокислоты могут быть разделены на несколько групп в зависимости от их физических свойств. Исходя из цели нашего обсуждения, мы выделим две существенные группы:

  1. Незаменимые аминокислоты.
  2. Заменимые аминокислоты.

Незаменимые аминокислоты должны поступать с пищей, поскольку они не могут синтезироваться в организме с необходимой скоростью. Заменимые кислоты могут синтезироваться в организме из других белков и небелковых веществ, и они так же важны, как и незаменимые кислоты.

Незаменимые аминокислоты Заменимые аминокислоты
гистидин аланин
изолейцин аргинин
лейцин аспаргиновая кислота
лизин цистеин
метионин цистин
фенилаланин глютаминовая кислота
типрофан глютамин
валин глицин
пролин
серин
треонин
тирозин

Белки, содержащие все незаменимые аминокислоты, называются полноценными. Те, которые содержат не все незаменимые аминокислоты, являются неполноценными. Два или более неполноценных белка могут образовать полноценный, если в сочетании они дают организму все незаменимые аминокислоты.

Поглощение и усвоение белка

Сначала белок расщепляется на фрагменты — пептиды. Этот процесс осуществляется в желудке с помощью пепсина и в тонком кишечнике с помощью химотрипсина и трипсина (ферментов поджелудочной железы).

Затем эти пептидные фрагменты расщепляются до свободных аминокислот (не связанных с другими аминокислотами). Этот процесс происходит под воздействием аминопептидазы, содержащейся в клетках эпителия тонкого кишечника, а также под действием карбоксипептидазы, выделяемой поджелудочной железой.

Белок → пептидные фрагменты → свободные аминокислоты

Затем свободные аминокислоты переносятся в эпителиальные клетки с помощью вторичного активного транспорта в сочетании с натрием. Короткие цепочки аминокислот, ди- или трипептиды, могут всасываться при помощи вторичного активного транспорта в сочетании с градиентом ионов водорода (Н +).

Читайте так же:  Народные рецепты для похудения жиросжигатели

Для определенных аминокислот существуют разные переносчики. В клетках эпителия эти небольшие пептиды гидролизуются (расщепляются) на аминокислоты. Оба процесса протекают под действием АТФ. Далее эти аминокислоты поступают в кровь путем облегченной диффузии через клеточную мембрану.

Эти аминокислоты, попавшие в кровь и внеклеточную (экстрацеллюлярную) жидкость, составляют большую группу, именуемую аминокислотным пулом. Этот пул также содержит аминокислоты, катаболизированные из других тканей и синтезированные в печени. Аминокислоты постоянно поступают в пул и покидают его.

Далее аминокислоты поглощаются в печени или клетках. Те аминокислоты, которые попадают в печень, либо используются для синтеза белков, либо преобразуются в кетокислоты, углеводоподобные вещества, в процессе дезаминирования.

Дезаминирование

Поскольку организм не может получить полезную энергию из азота в аминокислотах, азот нужно вывести прежде, чем будут использованы кетоаминокислоты. Дезаминирование включает в себя удаление аминогруппы из аминокислот. Азот из этих аминогрупп передается глютамату, который затем дезаминируется с высвобождением аммиака в реакции глутаматдегидрогеназы.

Этот азот дезаминированных аминокислот используется для формирования мочевины в печени, которая затем выводится почками.

Цикл Кребса

Оставшиеся кетоаминокислоты могут обеспечить печень энергией путем их катаболизма в цикле Кребса, который используется для образования глюкозы в процессе глюконеогенеза, либо для синтеза жиров, поставляя ацетил-КоА (субстрат, необходимый для синтеза жирных кислот). Они также могут быть преобразованы в новые аминокислоты путем трансаминирования.

Трансаминирование

Процесс трансанимирования подразумевает перенос аминогруппы с аминокислоты на кетокислоту. Большинство реакций трансаминирования предполагают перенос аминогруппы в кетоглютарат, с образованием новой кетокислоты и глютамата.

Одна из важнейших реакций трансаминирования включает аминокислоты с разветвленной цепочкой (АРЦ) и происходит в основном в мышцах. В такой реакции аминогруппы АРЦ перемещаются и поступают в кетоглютарат, который, в свою очередь, образует разветвленную цепь кетокислот и глютаминовую кислоту.

Аминогруппа глютаминовой кислоты затем переносится на пируват, который образует кетоглютарат и аланин. Аланин отправляется из мышц в печень, где аминогруппа отделяется от него и попадает в оксалоацетат, вновь образуя кетоглюторат и пируват.

Пируват, который теперь находится в печени, используется для получения глюкозы. Этот процесс называется циклом глюкоза-аланин. Во время тренировок этот процесс ускоряется. Во время тренировок расщепляется мышечный протеин, чтобы доставить необходимые для цикла глюкоза-аланин АРЦ. Так выглядит процесс белкового обмена.

Обмен белков и баланс азота

Поглощаемые клетками аминокислоты используются дли синтеза белков. Всем клеткам необходимо постоянное обеспечение белками, поскольку они всегда находятся в процессе белкового обмена. Белковый обмен состоит из двух частей: синтеза белков и их распада.

Белковый обмен = синтез белков (анаболизм) – распад белков (катаболизм)

Большая часть белка организма сконцентрирована в виде мышц. Когда мышцы не получают требуемое количество аминокислот из спортивного питания или пищи, мышцы начинают распадаться на аминокислоты, которые следом направляются в аминокислотный пул и используются надлежащим образом. Когда распадается больше белка, чем синтезируется, человек начинает терять белок.

То же самое верно и в том случае, когда синтезируется больше белка, чем распадается — человек начинает терять белок. Без достаточного обеспечения белками (при недоедании) в организме человека невозможен нормальный белковый обмен, что в конечном счете может привести к летальному исходу.

Чтобы предотвратить распад мышечных волокон, организм нуждается в постоянном пополнении аминокислотами. Основным источником аминокислот для человека является пищевой белок. Ввиду своего значения белок является единственным из трех основных макронутриентов (жиры, углеводы и белки), который имеет рекомендуемую дневную норму потребления. В настоящее время дневная рекомендованная норма составляет 0,83 г белка на 1 кг веса (0,377 г на фунт веса).

Несмотря на споры вокруг этой темы, очевидным остается тот факт, что у тренирующегося, активного человека расходуется больше белков, поэтому и потреблять их ему нужно больше, чем неактивному человеку.

Белковый обмен включает процессы синтеза и распада. Для наращивания мышечной массы необходимо, чтобы оборот белка был положительным, либо он должен обладать положительным балансом азота. Определение “азотистый баланс” используется как мера измерения потребления и выделения азота в результате метаболизма белков.

Баланс азота = (общее количество выделяемого азота) – (азот в моче) – (азот в кале) – (азот в поте)

Когда значение равно нулю, это называется азотным балансом. Когда значение больше нуля, значит, азотистый баланс положительный, и дополнительный белок будет использован для синтеза новых тканей.

Когда значение меньше нуля, это значит, что азотистый баланс является отрицательным. Это может привести к тому, что для получения энергии будут использоваться аминокислоты из скелетных мышц.

Организм не запасает белки, как это он делает в случае с жирами (жировая ткань) и глюкозой (глюкоген). Избыток белка, потребленного сверх нормы, необходимой для поддержания белкового обмена, превращается в глюкозу или жирные кислоты.

Таким образом, в случае отрицательного азотистого баланса, чтобы произвести энергию, организм вынужден разрушать функционирующие ткани и скелетные мышцы. Чаще всего это не представляет большой угрозы, так как во взрослом организме содержание белка относительно постоянно и окисляется столько аминокислот, сколько получает человек из питания.

Однако у спортсменов содержание белка не является постоянной величиной, поскольку во время тренировок происходит интенсивный процесс распада белков.

Для интенсивно тренирующихся спортсменов ученые и спортивные доктора рекомендуют ежедневно с питанием принимать от 1,2 до 1,8 г белков на 1 кг веса тела.

Видео удалено.
Видео (кликните для воспроизведения).

По поводу того, какое количество белка считать оптимальным, по-прежнему нет единого мнения. Для определения этой нормы необходимо учитывать массу факторов: интенсивность, продолжительность, частота тренировок, объем потребляемых калорий, цель тренировок и желаемый результат с учетом конституции тела.

Читайте так же:  Глютамин и глютамин разница

Аминокислоты

Все живые организмы, как растения, так и животные, сходны в том, что содержат вещество, без которого жизнь была бы невозможна. Это вещество называется белок, или протеин (от греческого «протос» — первый). Белки состоят из аминокислот.
Мышцы, связки, сухожилия, различные органы, железы, ногти, волосы, энзимы, гормоны — состоят из протеинов, которые необходимы также для роста костей.

Аминокислоты являются химическими компонентами молекул протеинов. Различные сочетания 28 известных аминокислот образуют в нашем организме 50 тысяч различных протеинов и 20 тысяч энзимов.
Человеческий организм может синтезировать любой необходимый белок из этих 28 аминокислот. Количество их комбинаций превышает всякое воображение — более чем 10 в 130-й степени! В каждой аминокислоте есть аминогруппа, содержащая, помимо всего прочего, азот.
При отсутствии или недостаточном количестве хотя бы одной аминокислоты необходимые белки не образуются.
Аминокислоты являются нейротрансмиттерами или предшественниками нейротрансмиттеров — передатчиков нервных импульсов в сипансах — т.е. участвуют в работе центральной нервной системы, позволяя ей принимать и посылать сигналы. Очевидно, 80 % аминокислот синтезируются в печени, а остальные мы получаем с пищей. У человека различают незаменимые , условно-незаменимые и заменимые аминокислоты .

Незаменимыми называются те, которые не синтезируются организмом или синтезируются в минимальных количествах. Их мы ежедневно получаем с пищей. Условно-незаменимые — это те, которые, при определенном состоянии обмена веществ, не производятся в достаточном количестве. Заменимые — все остальные.
Организм производит их в достаточном количестве, при наличии азота из незаменимых аминокислот.
Отдельные аминокислоты связаны между собой в цепи, называемые ди-, три-. полипептидами. Из таких цепочек состоят белки.

Группы аминокислот:
Незаменимые: изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин.
Условнонезаменимые: аргинин, гистидин, цистин, тирозин.
Заменимые: аланин, аспарагин, аспарагиновая кислота, глутамин, глицин, глутаминовая кислота.

Все природные аминокислоты являются альфа-аминокислотами L-ряда . Они лучше усваиваются организмом, чем аминокислоты D-ряда . Исключение составляет фенилаланин, который может иметь формулу DL-фенилаланина.
В организме непрерывно идут процессы с использованием аминокислот. И недостаточность любой из них неизбежно приводит к заболеваниям.
Недостаточность может быть результатом неправильного, несбалансированного питания или плохого усвоения протеинов системой пищеварения.
Аргинин способен увеличивать мышечную и уменьшать жировую массу тела. Восполнение аминокислот особенно важно, если вы страдаете дистрофией, психическими, нервными или сердечно-сосудистыми заболеваниями, синдромом хронической усталости, диабетом, эпилепсией, анемией, восстанавливаете здоровье после злоупотребления алкоголем, наркотиками или долго соблюдали лечебную диету.

Белки в питании детей

Белки и их роль в питании спортсменов [ править | править код ]

Белки (протеины, от греч. «protos» — «первый») — сложные азотсодержащие биополимеры, минимальной структурной единицей которых (мономером) являются аминокислоты.

Аминокислоты — органические кислоты, содержащие аминогруппу. Это основной структурный компонент белков.

Белки входят в состав каждой клетки животного и растительного организма. На долю белков приходится около 15-20% массы различных тканей человека, тогда как на жиры и углеводы -лишь 1-5%.

Белки выполняют важные и разнообразные функции в организме:

  • Пластическая (строительная, структурная)

Белки являются основным строительным материалом клетки, ее органоидов, межклеточного вещества, биологической мембраны.

Все химические превращения в организме протекают при участии биологических катализаторов (ферментов). Они ускоряют биохимические реакции в миллионы и более раз. Белки являются основным компонентом всех известных в настоящее время ферментов.

Значительная часть гормонов (гормоны поджелудочной железы — инсулин и глюкагон, гормоны гипофиза, кальцитонин щитовидной железы и т.д.) по химической природе является белками или полипептидами. Гормоны влияют на продукцию или активность белков-ферментов, изменяют скорость катализируемых ими химических реакций, т.е. в конечном счете управляют обменом веществ.

Белки обеспечивают транспорт по крови кислорода (гемоглобин), липидов (липопротеиды различной плотности), некоторых витаминов, гормонов, лекарственных веществ, перенос веществ через клеточную мембрану и транспорт по цитоплазме клетки.

Белки (иммуноглобулины, интерферон) обеспечивают иммунный ответ, который является способом защиты внутреннего постоянства сред организма от живых тел и веществ, несущих в себе признаки генетически чужеродной информации.

Белки могут быть источником энергии, если- пища бедна углеводами и жирами. При окислении 1 г белков выделяется 4 ккал энергии.

[2]

Биологическая ценность белков пищи определяется сбалансированностью аминокислотного состава (соотношением входящих в их состав незаменимых аминокислот), степенью усвояемости и доступностью белков пищи ферментам пищеварительного тракта.

В связи с тем, что биологическая ценность пищевых белков зависит в основном от содержания и соотношения входящих в их состав незаменимых аминокислот, ее можно-определять путем сравнения аминокислотного состава изучаемого белка (потребляемого белка) со справочной шкалой аминокислот гипотетически «идеального» белка (табл.). Этот метод получил название аминокислотного скора.

Таблица Аминокислотный состав и аминокислотный скор «идеального» белка

Содержание, г/100 г белка

9. Гистидин (для детей до 1 года)

ФАО — Продовольственная и сельскохозяйственная организация ООН; ВОЗ — Всемирная организация здравоохранения.

Расчет проводится следующим образом:

Аминокислотный скор каждой незаменимой аминокислоты (АК) в «идеальном» белке принимают за 100%, а в пищевом белке (потребляемом) определяют процент соответствия:

Содержание АК (мг) в 1 г исследуемого белка * 100 Содержание той же АК (мг) в 1 г «идеального» белка

В результате определяется аминокислота с наименьшим скором, которая и будет лимитировать биологическую ценность исследуемого белка.

Белки организма постоянно обновляются вследствие непрерывно протекающих процессов их распада и синтеза. Поэтому для обеспечения высокого уровня их биосинтеза требуется непрерывное пополнение запаса аминокислот, используемых для построения или обновления белковых молекул. Поскольку для построения подавляющего большинства белков организма человека требуются все 20 аминокислот, но в различных соотношениях, дефицит любой из незаменимых аминокислот в рационе неизбежно приведет к нарушению синтеза белка в необходимом количестве.

Читайте так же:  Аминокислоты участвуют в синтезе

Пищевые белки (мясо и мясопродукты, рыба и морепродукты, яйца, молоко и молокопродукты, бобовые, злаковые и т.д.) являются источниками пополнения фонда аминокислот в организме человека. Но необходимо знать, что белки животного происхождения имеют высокую биологическую ценность, а растительные белки лимитированы по ряду незаменимых аминокислот.

Например, белки злаковых культур (пшено, рожь, овес, просо и т.д.), а следовательно, полученные из них продукты (мука, крупы, хлебобулочные изделия и т.д.) неполноценны по лизину, метионину, треонину.

В белке картофеля и некоторых бобовых не хватает метионина и цистеина.

В кукурузе имеется значительный дефицит триптофана и лизина.

Поэтому для удовлетворения потребностей организма в незаменимых аминокислотах иногда целесообразно использовать комбинации пищевых продуктов.

В частности, благоприятна комбинация растительных и молочных продуктов. Основываясь на этих знаниях, пищевая промышленность разработала и внедрила в практику, например, сорта хлеба с добавлением обезжиренного молока, молочной сыворотки и т.д.

Биологическая ценность белков зависит не только от их аминокислотного состава, но и от степени его усвояемости и перевариваемости (доступности белков пищи ферментам пищеварительного тракта).

По скорости переваривания пищевые белки можно расположить в такой последовательности:

  • белки молока, молочных продуктов, яиц усваиваются на 96-98%;
  • белки мяса и рыбы — на 93-95%;
  • белки хлеба — на 62-85%;
  • овощей — на 80%;
  • круп — на 80%;
  • картофеля и бобовых — на 70%.

Здесь также отметим, что по степени усвояемости и перевариваемости белки растительного происхождения уступают животным белкам. Связано это с тем, что растительные клетки заключены в плотные оболочки из клетчатки, что затрудняет проникновение в них пищеварительных ферментов.

На степень усвоения организмом белков пищи оказывает влияние также технология получения продуктов питания и их кулинарная обработка. Например, вареный яичный белок усваивается на 97-98%. Сырой же белок усваивается плохо, так как в нем содержится мукопротеин — аведин, который подавляет действие пищеварительных ферментов. Под влиянием температуры 80°С аведин разрушается, поэтому лучше всего усваиваются яйца, подвергнутые термической обработке.

Таким образом, знания о биологической ценности пищевых белков и анализ количества потребляемого растительного и животного белка необходимы для правильного сочетания привычных продуктов питания при построении сбалансированных рационов питания для юных спортсменов.

Необходимо также помнить, что повышенные физические нагрузки могут привести к возникновению аминокислотных дисбалансов между их поступлением и расходом.

Это связано с рядом причин:

  • повышенной потребностью растущего организма в белке;
  • повышенными тратами белка под влиянием спортивных нагрузок;
  • недостаточным содержанием белка или несбалансированностью аминокислотного состава в потребляемых продуктах питания;
  • неполным усвоением белка.

Значение аминокислот [ править | править код ]

Аминокислоты подразделяются на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков организма человека. Все протеиногенные аминокислоты делятся на эссенциальные (незаменимые) и неэссенциальные (заменимые) в зависимости от того, возможно ли их образование (синтез) в организме.

Напомним еще раз, что дефицит любой из незаменимых аминокислот в рационе неизбежно приведет к нарушению синтеза белка в необходимом количестве.

В клетках организма человека существует определенный уровень (пул) аминокислот (примерно 300 г свободных аминокислот), который включает аминокислоты:

  • образовавшиеся при распаде белков пищи (100 г аминокислот);
  • при распаде тканевых белков (примерно 200 г белков организма);
  • вновь синтезированные заменимые аминокислоты.

Аминокислоты в организме:

  • используются в большей степени для синтеза белков (мышечных белков — актин, миозин; белков крови — (Гемоглобин; ферментов пищеварительного тракта — амилаза, пепсин, трипсин; гормонов белковой природы — инсулин, глюкагон и др.);
  • являются предшественниками синтеза различных небелковых соединений, имеющих важное биологическое значение. Так, из аминокислот синтезируется глюкоза и азотистые основания (пуриновые и пиримидиновые), гормоны — адреналин, тироксин, небелковая часть гемоглобина — гем, креатин, участвующий в энергообеспечении мышечной деятельности, и др.
  • часть аминокислот подвергается полному распаду до конечных продуктов: углекислого газа, воды и аммиака с выделением энергии.

При распаде некоторых аминокислот в качестве промежуточного продукта образуется пировиноградная кислота, из которой возможен синтез глюкозы. Аминокислоты, которые могут превращаться в глюкозу, называются глюкогенными. К ним относятся: валин, глицин, аланин, аргинин, серин, цистеин, глютамин, глютаминовая кислота, аспарагин, аспарагиновая кислота, пролин, гистидин, метионин, треонин. Из пяти аминокислот (лейцин, лизин, триптофан, тирозин, фенилаланин) могут образовываться кетоновые тела, поэтому они называются кетогенные.

Примеры участия аминокислот в обмене веществ:

  • из фенилаланина и тирозина синтезируются гормоны мозгового слоя надпочечников (адреналин и норадреналин);
  • из тирозина образуется гормон щитовидной железы — тироксин, меланин — пигмент, определяющий цвет кожи и волос;
  • метионин используется для синтеза ацетилхолина — медиатора возбуждения в нервно-мышечном синапсе;
  • из гистидина образуется гистамин. Гистамин является медиатором аллергических реакций, вызывает расширение мелких кровеносных сосудов и сужение крупных, стимулирует образование соляной кислоты в желудке, участвует в возникновении болевого синдрома;
  • креатин синтезируется в тканях из заменимых аминокислот аргинина и глицина и незаменимой — метионина. Под действием креатинкиназы и АТФ превращается в креатинфосфат (КФ), который используется для восстановления АТФ в мышцах;
  • из метионина и лизина синтезируется карнитин — специфический переносчик жирных кислот в митохондрии и т.д.

В питании детей и подростков, систематически занимающихся спортом, необходимо учитывать, что белок, как основной пластический материал, используется растущим организмом ребенка не только для восполнения белковых затрат на физические и другие виды жизнедеятельности, но и для формирования новых клеток и тканей, необходимых для дальнейшего роста и развития.

У юных спортсменов под влиянием систематической мышечной деятельности, сопровождающейся значительной активацией gроцессов обмена веществ, потребность в белке повышена по сравнению с детьми и подростками, не занимающимися спортом. При повышенных тратах белков под влиянием спортивных нагрузок, недостаточного содержания в пище или неполного их усвоения возможно возникновение аминокислотных дисбалансов. Установлено, что белковая недостаточность в первую очередь приводит к неустойчивости человека в стрессовых ситуациях, снижению иммунитета, повышенной восприимчивости его к инфекциям и т.д.

Читайте так же:  Бца спортивное питание для чего пьют

В связи с этим особое значение приобретает вопрос о необходимости разработки пищевых рационов, сбалансированных по оптимальному содержанию белка и его аминокислотному составу.

Значение аминокислот для здоровья человека – главные пищевые источники

Аминокислоты представляют собой органические молекулы важны, которые выполняют различные биологические функции.

Давайте посмотрим, для чего они нужны, какие существуют виды, какие синтезируются в организме и какие можно получить только из пищи.

Для чего нужны аминокислоты

Аминокислотами называются веществами с низкой молекулярной массой, которые являются строительными блоками белков. Они образуются, по крайней мере, из одной группы органической кислоты (карбоксильная) и, по меньшей мере, одной аминогруппы. Обладают свойством связываться друг с другом через пептидную связь.

Аминокислоты, полученные с пищей, распадаются на простые основания, затем всасываются в тонком кишечнике и используются организмом для выполнения нескольких важных функций:

  • участвуют в синтезе белка и, следовательно, необходимы для обновления клеток организма
  • производят энергию (разветвленные аминокислоты)
  • участвуют в синтезе других соединений, в которых играют роль нейромедиатора, то есть передают информацию между клетками нервной системы

Типы аминокислот

Известно около 500 различных форм аминокислот, отличаемых в зависимости от химических связей, которые их характеризуют, но в нашем ДНК закодировано только 20 и они делятся на две большие категории:

  • Незаменимые аминокислоты, которые не синтезируются организмом и поступают исключительно благодаря питанию: лизин, триптофан, лейцин, изолейцин, фенилаланин, треонин, метионин, гистидин и валин
  • Заменимые аминокислоты, которые организм может производить самостоятельно из других органических молекул: цистеин, аланин, аргинин, аспарагиновая кислота, глутамат, тирозин, глицин, пролин, гистидин, серин, аспарагин

В дополнение к упомянутой, используют другую классификацию аминокислот:

  • Разветвленные аминокислоты (изолейцин, лейцин и валин): имеют разветвленную структуру и играют важную роль в пластической фазе, т.е. образовании и реконструкции мышцы, кроме того, замедляют процесс разложения белков, способствуют также поддержке мышц при интенсивных нагрузках;
  • Полунезаменимые аминокислоты (цистеин и тирозин), которые синтезируются в организме из других незаменимых аминокислот: метионина и фенилаланина;
  • Условно незаменимые аминокислоты (аргинин, глицин, пролин, таурин и глютамин,), так называются, потому что организм может быть не в состоянии синтезировать их в некоторые периоды жизни (дети, беременность) или при наличии заболеваний, таких как фенилкетонурия.

В каких продуктах находятся аминокислоты

Как сказано выше, заменимые аминокислоты синтезируются непосредственно в организме, а незаменимые должны поступать с питанием. Они являются очень важными для человека, поэтому правильное питание подразумевает соответствующее потребление белка.

Потребность в белке меняется в зависимости от пола, возраста, стиля жизни, индивидуального обмена веществ, спортивной деятельности и может варьироваться от минимального в 0,8 грамма на кг веса до гораздо более высоких значений для людей, которые практикуют интенсивные спортивные занятия.

Сбалансированное питание должно содержать ⅔ белков животного происхождения и ⅓ белков растительного происхождения.

Продукты, богатые незаменимыми аминокислотами являются:

кукуруза, яйца, молоко, курица

яйца, коричневый рис, зерна

кукуруза, яйца, соя

яйца, пшеница, мясо

яйца, молоко, кукуруза, сыр

говядина, молоко, соя

яйца, кукуруза, картофель, курица

молоко, яйца, маниока

Преимущества и противопоказания аминокислот

Основной функцией аминокислот является образование белков, необходимых для обновления клеток организма. Однако, некоторые аминокислоты могут нести в себе вполне конкретные преимущества.

Риски дефицита аминокислот

Дефицит даже одной аминокислоты может нарушить весь белковый метаболизм со всеми последствиями, которые могут возникнуть в случае дефицита белка: потеря мышечного тонуса, снижение иммунитета, потеря памяти и концентрации, снижение массы тела.

Кроме того, учитывая важность аминокислот для других процессов, дефицит каждого из типов несёт в себе и другие риски:

  • Дефицит тирозина может привести к возникновению отклонений в функции щитовидной железы;
  • Дефицит триптофана может вызвать бессонницу, состояние тревожности и снижение психологического благополучия в целом;
  • Дефицит аргинина, креатина и карнитина не только способствует старению кожи, но и может вызвать выпадение волос и ослабление мышечных фасций.

Противопоказания к употреблению аминокислот

Аминокислоты, будучи основными элементами белков, очень важны для правильной работы организма. Такие вещества, если принимать их в умеренных количествах, вряд ли могут причинить вред, но всё равно, приём синтетических аминокислот должен проводится под строгим контролем врача.

Видео удалено.
Видео (кликните для воспроизведения).

Прием большого количества аминокислот (рекомендуемая дозировка грамм на каждый килограмм веса тела), на самом деле, может быть вреден для печени и почек.

Людям, страдающим от заболеваний почек, следует ограничивать потребление белка и, таким образом, аминокислот. Как и те, кто страдает от заболеваний печени, таких как цирроз или гепатит, потому что больная печень не может правильно усваивать белки и аминокислоты.

[1]

Источники


  1. Зараев, А.В. Астрология, карма и здоровье. Близнецы / А.В. Зараев. — М.: Гелиос; Издание 3-е, перераб. и доп., 1993. — 389 c.

  2. Синельникова, А. Диетическое питание: кулинарные рецепты для вашего здоровья / А. Синельникова. — М.: Вектор, 2013. — 895 c.

  3. Гурвич, Михаил Домашняя диетология / Михаил Гурвич. — М.: Эксмо, 2014. — 766 c.
Аминокислоты которые синтезируются в организме называются
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here