Аминокислоты отличаются друг от друга

Сегодня предлагаем ознакомится со статьей на тему: аминокислоты отличаются друг от друга с профессиональным описанием и объяснением.

Биология и медицина

Аминокислоты

В природе существуют такие структуры, которые оказались на редкость удачными в организации систем любой сложности. Одна из них — аминокислота. Это минимально сложное органическое соединение, одновременно и кислота, и основание, потому что в него с двух концов вмонтированы амидная и карбоксильная группы. Они помогают аминокислотам соединяться друг с другом, образуя относительно прочные и в то же время лабильные структуры. Известно около 150 аминокислот. Живая природа использует только 20 из них. Однако представьте, какое количество комбинаций можно сделать лишь из 20 исходных единиц! Из них созданы все белки, которые составляют основу любого организма — структурные, каталитические (ферменты), регуляторные. В результате серии последовательных химических реакций, осуществляемых с помощью специальных ферментов (пептидаз), в клетках образуются олигопептиды, которые обладают высокой биологической активностью и которые были классифицированы как регуляторы разнообразных физиологических процессов. Таких физиологически значимых пептидов было открыто несколько сотен. Но основной «костяк» — не более 40-50, остальные — их комбинации, дополнения.

Аминокислоты — класс азотсодержащих органических кислот, имеющих общие черты строения, которые могут быть представлены общей формулой H(3)N -CH — COOH. Rn

Аминокислоты отличаются друг от друга типом аминокислотного остатка Rn. Таким образом молекула каждой аминокислоты содержит специфическую часть (боковую группу — Rn) и неспецифическую часть. Существует около 20 различных аминокислот. Аминокислоты являются строительными блоками (мономерами), из которых строятся все белковые молекулы (полимеры). Основные 20 аминокислот : аланин (ала, ala, A) аргинин (арг, arg, R), aспарагин (асн, asn, N), аспартат (асп, asp, D), валин (вал, val, V), гистидин (гис, his, H), глицин (гли, gly, G), глутамат (глу, glu, E),. глутамин (глн, gln, Q) изолейцин , (илей,ile, I), лейцин , (лей, leu, L), лизин , (лиз, lys, K), метионин , (мет, met, M), пролин , (про, pro, P), серин (сер, ser, S), тирозин , (тир, tyr, Y), треонин , (тре, thr, T), триптофан (три, trp, W), фенилаланин (фен, phe, F), цистеин (цис, cys, C). Свободные аминокислоты составляют примерно 0.5% от веса клетки , входящие в состав белков — около 15%. Аминокислоты — структурные элементы, из которых построены белки. Представляют собою карбоновые кислоты, содержащие одну или две аминогруппы. Общим признаком аминокислот, входящих в состав белка (исключение составляет пролин), является наличие свободной карбоксильной группы и свободной незамещенной аминогруппы у альфа-углеродного атома.Наиболее рациональная классификация аминокислот основана на различиях в полярности R-групп. R-группы подразделяются на четыре основных класса:

В таблице представлены все 20 входящих в состав белков аминокислот, принадлежащих к вышеуказанным группам.

Более подробно описания свойств отдельных аминокислот можно наити в книге Шульца и Ширмера (Шульц,Ширмер,1982) .

Аминокислоты объединяют по разным признакам

Читайте также:

  1. A-аминокислоты. Пептиды
  2. Автомобильные вентильные генераторы с клювообразным ротором
  3. Аминокислоты
  4. Аминокислоты используются в качестве лекарств
  5. Аминокислоты отличаются друг от друга структурой боковых цепей, от которой зависят химические, физические свойства и физиологические функции белков в организме.
  6. Аминокислоты, которые входят в состав белка
  7. Аминокислоты.
  8. Антихолинэстеразным средствам.
  9. В реверсивном счётчике объединяются схемы суммирующего и вычитающего счётчиков. Кроме того, предусматривается возможность управления направлением счёта.
  10. Вопрос 1. Правила квалификации преступления по признакам объекта
  11. Вопрос 2. Правила квалификации преступлений по признакам объективной стороны

Аминокислоты – это строительные блоки макромолекул белков. По строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу. Таким образом, в аминокислотах обязательно присутствует карбоксильная группа (СООН), аминогруппа(NH2), асимметричный атом углерода и боковая цепь(радикал R). Именно строением боковой цепи аминокислоты и отличаются друг от друга.

Классификация аминокислот

Из-за разнообразного строения и свойств классификация аминокислот может быть различной, в зависимости от выбранного качества аминокислот. Аминокислоты подразделяются:

1. В зависимости от положения аминогруппы по отношению к С 2 (α-углеродный атом) на α-аминокислоты, β-аминокислоты и др.

2. По абсолютной конфигурации молекулы на L- и D-стереоизомеры.

3. По оптической активности в отношении плоскости поляризованного света – на право- и левовращающие.

4. По участию аминокислот в синтезе белков – протеиногенные и непротеиногенные.

5. По строению бокового радикала – ароматические, алифатические, содержащие дополнительные СООН- и NH2-группы.

6. По кислотно-основным свойствам – нейтральные, кислые, основные.

7. По необходимости для организма – заменимые и незаменимые.

Дата добавления: 2014-01-07 ; Просмотров: 208 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Аминокислоты

Читайте также:

  1. A-аминокислоты. Пептиды
  2. Аминокислоты используются в качестве лекарств
  3. Аминокислоты объединяют по разным признакам
  4. Аминокислоты отличаются друг от друга структурой боковых цепей, от которой зависят химические, физические свойства и физиологические функции белков в организме.
  5. Аминокислоты, которые входят в состав белка
  6. Аминокислоты.
  7. Липотропный гормон — представляет собой полипептид из 91 аминокислоты.
  8. Основные аминокислоты
Читайте так же:  Заболевания связанные с недостатком аргинина

Липиды

Липидами обычно называют нерастворимые в воде органические вещества, являющиеся сложными эфирами жирных кислот и спиртов (например, глицерола). Жирные кислоты имеют общую формулу R?COOH, где R – атом водорода или радикал типа –CH3. В липидах радикал обычно представлен длинной углеводородной цепью; этот «хвост» гидрофобен, что и определяет плохую растворимость липидов в воде. Липиды, образующиеся из глицерола, называются глицеридами.

Триацилглицеролы – самые распространённые из природных липидов. Они делятся на жиры, остающиеся твёрдыми при 20 °С, и масла, находящиеся при этой температуре в жидкой фазе. Масла включают ненасыщенные жирные кислоты, имеющие в своём составе одну или несколько двойных связей C=C, жиры – в основном насыщенные жирные кислоты (без двойных связей). Калорийность липидов выше калорийности углеводов, поэтому они откладываются в организме животных как запасное питательное вещество. Жир также служит для теплоизоляции и обеспечивают плавучесть. Одним из продуктов окисления жиров является вода; некоторые пустынные животные запасают жир в организме именно для этой цели. Масла чаще всего накапливаются в растениях (семена подсолнечника, кокосовой пальмы и т. п.).

Фосфолипиды – группа глицеролов, включающая остатки жирных кислот и фосфорной кислоты. Благодаря наличию полярной фосфатной группы часть молекулы приобретает способность растворяться в воде, другая же часть молекулы остаётся нерастворимой. Из фосфолипидов строятся все плазматические мембраны живых клеток.

Воска – сложные эфиры жирных кислот и длинноцепочечных спиртов. Они используются животными и растениями в качестве водоотталкивающего покрытия (пчелиные соты, покрытие перьев птиц, эпидермис некоторых плодов и семян).

Стероиды и терпены построены из пятиатомных углеводородных строительных блоков C5H8. Из всех стероидов в организме человека в наибольшем количестве присутствует холестерол – ключевой промежуточный продукт синтеза стероидов. Стероидами также являются половые гормоны (эстроген, прогестерон, тестостерон), витамин D. К терпенам относятся ароматические вещества (ментол, камфора), натуральный каучук.

С кровью и лимфой липиды переносятся в виде липопротеинов – соединений липидов с белками.

В растениях и животных встречается свыше 170 различных аминокислот. В белках из них присутствует только 26. Растения синтезируют все необходимые им аминокислоты сами. Животные должны получать часть аминокислот – так называемые незаменимые аминокислоты (восемь аминокислот, в частности, валин, лизин, метионин, триптофан) – с пищей в готовом виде; синтезировать их из других органических соединений могут только растения и бактерии.

Все аминокислоты — бесцветные кристаллические вещества. Они растворимы в воде, многие имеют сладкий вкус. Важное свойство аминокислот — их амфотерность, то есть возможность проявлять как кислотные, так и основные свойства. Эта двойственность вещества связана с тем, что все аминокислоты содержат карбоксильную группу (-СООН) и аминогруппу (-NH2) (рис. 4, A). Карбоксильная группа придает аминокислоте кислотные свойства, а аминогруппа — основные.

Рисунок 3.1 Общая формула аминокислот.

Общая формула аминокислот представлена на рисунке. Все они содержат карбоксильную группу –COOH и аминогруппу –NH2. В аминокислоте глицине роль R-группы играет атом водорода, в аланине – –CH3. Все аминокислоты могут существовать в двух конфигурациях: L-форме и D-форме. В природе встречается только L-форма.

Аминокислоты – бесцветные кристаллические вещества, обычно растворимые в воде. Благодаря пептидным связям аминокислоты объединяются друг с другом, образуя полипептиды (белки). Дисульфидными связями полипептиды могут соединяться как между собой, так и различными участками одной и той же цепи.

Дата добавления: 2014-01-07 ; Просмотров: 350 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Чем отличаются аминокислоты друг от друга

Аминокислоты – это химические структурные единицы, которые образовывают белки. Всякий живой организм на планете складывается из белков. Человечеству известно приблизительно 150 аминокислот. Лишь 20 из них используются живой природой.

Все аминокислоты отличаются одна от второй химическим происхождением радикала (R). Любая аминокислота без проблем растворяется водой. Большинство из этих веществ синтезируются в печени. Но ряд некоторых элементов может синтезироваться в других органах и в организме в целом, а потому человеку следует их получать вместе с едой. К ценным принадлежат такие аминокислоты, как триптофан, гистидин, лейцин, валин и другие.

В организме беспрерывно проходит процесс образования белков. Если же хоть одной из нужных аминокислот нет, то формирование белков останавливается. Из-за этого могут начать развиваться самые опасные недомогания, начиная расстройством пищеварения, и, заканчивая замедлением роста.

Современный уровень развития фармакологии дает возможность принимать заменимые и незаменимые аминокислоты в качестве пищевых биологически активных добавок. Особенно важно их употребление при разного рода заболеваниях. Необходимы аминокислоты приверженцам вегетарианства. Выбирая добавки, содержащие аминокислоты, предпочтение нужно отдать продукту с L-кристаллическими аминокислотами.

[2]

Аминокислоты. Аминокислоты представляют собой основные «строительные» единицы всех белков.

Аминокислоты представляют собой основные «строительные» единицы всех белков.

Большинство аминокислот, участвующих в биохимических превращениях, являются карбоновыми кислотами, содержащими карбоксильную и аминную группы, которые находятся у одного и того же углеродного атома. В организме человека найдено 70 аминокислот. Двадцать из них входят в состав белков. Это так называемые протеиногенные аминокислоты.

Читайте так же:  Сколько пить креатин моногидрат

Общая формула α-аминокислот представлена на Рис. 1.2:

Рис. 1.2. Общая формула аминокислот

Аминокислоты отличаются друг от друга структурой боковых групп, которые в приведенной выше формуле, обозначены через R. Эти группы имеют различную химическую структуру.

Дата добавления: 2015-07-22 ; просмотров: 571 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Аминокислоты отличаются друг от друга

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты. Белки построены из двадцати различных аминокислот. Формула аминокислоты:

В состав аминокислот входят: NH2 — аминогруппа, обладающая основными свойствами; СООН — карбоксильная группа, имеет кислотные свойства. Аминокислоты отличаются друг от друга своими радикалами — R. Аминокислоты — амфотерные соединения. Они соединяются друг с другом в молекуле белка с помощью пептидных связей.

Схема конденсации аминокислот (образование пептидной связи)

Есть первичная, вторичная, третичная и четвертичная структуры белка. Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи скручиваются определенным образом в компактную структуру, образуя глобулу (шар) — это третичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка (рис. 30).

При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы. Это явление называется денатурацией (рис. 31). Иногда денатурированный

[3]

белок при изменении условий вновь может восстановить свою структуру. Этот процесс называется ренатурацией и возможен лишь тогда, когда не разрушена первичная структура белка.

Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины, фибриноген, миозин.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины, нуклеопротеины.

РАЗЛИЧИЯ В СТРОЕНИИ АМИНОКИСЛОТ

Радикалы аминокислот могут значительно отличаться друг от друга по строению.

Если есть дополнительные карбоксильные группы в радикале, то заряд молекулы в нейтральной среде отрицателен, а ИЭТ такой молекулы находится в кислой среде.

Аминокислота, в радикале которой есть дополнительная аминогруппа (NH2-группа), в нейтральной среде заряжена положительно. ИЭТ такой аминокислоты находится в щелочной среде (pI>7). К таким аминокислотам относятся лизин, аргинин и гистидин.

Аминокислота, в радикале которой есть дополнительная карбоксильная группа (COOH-группа), в нейтральной среде заряжена отрицательно. ИЭТ такой аминокислоты находится в кислой среде (pI

Чем белки отличаются друг от друга?

Благодаря необъятному количеству возможных комбинаций при синтезе белка из 20 аминокислот существует множество разнообразных аминокислотных последовательностей, каждая из которых потенциально соответствует определенному белку. Все эти белки легко сгруппировать по отдельным классам, выделяя определенный признак – функцию или особенности строения.

Классификация по функции

В соответствии с биологическими функциями выделяют:

· структурные белки (коллаген, кератин),

· ферментативные (пепсин, амилаза),

· транспортные (трансферрин, альбумин, гемоглобин),

· пищевые (белки яйца, злаков),

· сократительные и двигательные (актин, миозин, тубулин),

· защитные (иммуноглобулины, тромбин, фибриноген),

· регуляторные (соматотропный гормон, адренокортикотропный гормон, инсулин).

Классификация по строению

В зависимости от формы молекулы выделяют глобулярные и фибриллярные белки. В глобулярныхбелках соотношение продольной и поперечной осей составляет

Простые белки немногочисленны

Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в «чистом» виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые.

Альбумины

Альбумины – это группа схожих белков плазмы крови с молекулярной массой около 40 кДа, содержат много глутаминовой кислоты и поэтому имеют кислые свойства и высокий отрицательный заряд при физиологических рН. Легко адсорбируют полярные и неполярные молекулы, являются, белком-транспортером в крови для многих веществ, в первую очередь для билирубина и длинноцепочечных жирных кислот.

Глобулины

Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислыеили нейтральные. Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в «осадочных» пробах (тимоловая, Вельтмана). Часто содержат углеводные компоненты.

При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α1-глобулины, α2-глобулины, β-глобулины и γ-глобулины.

Картина электрофореза белков сыворотки крови

Так как глобулины включают в себя разнообразные белки, то их функции разнообразны:

Часть α-глобулинов обладает антипротеазной активностью, что защищает белки крови от преждевременного разрушения, например, α1-антитрипсин, α1-антихимотрипсин, α2-макроглобулин.

Некоторые глобулины способны к связыванию определенных веществ: трансферрин(переносит ионы железа), церулоплазмин (содержит ионы меди), гаптоглобин (переносчик гемоглобина), гемопексин (транспорт гема).

γ-Глобулины являются антителами и обеспечивают иммунную защиту организма.

Гистоны

Взаимодействие гистонов и ДНК
Участок суперспирали ДНК

Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются сдезоксирибонуклеиновой кислотой(ДНК), образуя дезоксирибо-нуклеопротеины. Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1, другие гистоны Н2а, H2b, НЗ, Н4 богаты лизином и аргинином (в сумме до 25%).

Читайте так же:  Креатин польза и вред для женщин

Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

Можно выделить две функции гистонов:

1. Регуляция активности генома, а именно – они препятствуют транскрипции.

2. Структурная– стабилизируют пространственную структуру ДНК.

Гистоны в комплексе с ДНК образуют нуклеосомы– октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Между нуклеосомами располагается гистон H1, также связанный с молекулой ДНК. ДНК обвивает нуклеосому 2,5 раза и переходит к гистону H1, после чего обвивает следующую нуклеосому. Благодаря такой укладке достигается уменьшение размеров ДНК в 7 раз.

Далее такие «бусы» нуклеосом могут складываться в суперспираль и более сложные структуры.

Протамины

Это белки массой от 4 кДа до 12 кДа, у ряда организмов (рыбы) они являются заменителями гистонов, есть в спермиях. Отличаются резко увеличенным содержанием аргинина (до 80%). Протамины присутствуют в клетках, не способных к делению. Их функция как у гистонов –структурная.

Коллаген

Синтез коллагена

Фибриллярный белок с уникальной структурой. Составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

Обычно содержит моносахаридные(галактоза) идисахаридные(галактоза-глюкоза) остатки, соединенные с ОН-группами некоторых остатков гидроксилизина.

Полипептидная цепь коллагена включает 1000 аминокислот и состоит из повторяющегося триплета [Гли-А-В], где А и В – любые, кромеглицина, аминокислоты. В основном это аланин, его доля составляет 11%, доля пролинаигидроксипролина– 21%. Таким образом, на другие аминокислоты приходится всего 33%. Структура пролина и гидроксипролина не позволяет образовать α-спиральную структуру, из-за этого образуется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка.

При синтезе коллагена первостепенноезначение имеет гидроксилирование лизина и пролина, включенных в состав первичной цепи, осуществляемое при участии аскорбиновой кислоты.

Синтезированная молекула коллагенапостроена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε-аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллыдиаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть. Например, выделанная кожа представляет собой почти чистый коллаген.

Эластин

Строение десмозина

По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластинс молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обуславливает наличие спиральных эластичных участков.

Характерной особенностью эластина является наличие своеобразной структуры – десмозина, который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

Видео удалено.
Видео (кликните для воспроизведения).

α-Аминогруппы и α-карбоксильные группы десмозина включаются в образование пептидных связей одного или нескольких белков.

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ

Для установления аминокислотного состава белков пользуются сочетанием кислотного (НС1), щелочного (Ва(ОН)2) и, реже, ферментативного гидролиза или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных аминокислот.

Аминокислоты, входящие в состав белков, являются a-аминокислотами. Все они принадлежат к L-ряду, а величина и знак оптического вращения зависят от природы радикалов аминокислот и значения рН раствора. В белках человека D-аминокислоты не обнаружены, однако они встречаются в клеточной стенке бактерий, в составе некоторых антибиотиков (актиномицинов).

Аминокислоты отличаются друг от друга химической природой радикала R, который не участвует в образовании пептидной связи. Современная рациональная классификация аминокислот основана на полярности радикалов.

Выделяют: 1) неполярные (гидрофобные); 2) полярные (гидрофильные); 3) ароматические (главным образом неполярные), 4) отрицательно заряженные и 5) положительно заряженные аминокислоты.

В некоторых белках обнаружены производные аминокислот. В белке соединительной ткани коллагене содержатся оксипролин и оксилизин. Дийодтирозин является основой структуры гормонов щитовидной железы.

Аминокислоты обладают общим свойством — амфотерностью (от греч amphoteros — двусторонний). В интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов (биполярных ионов). Значение ИЭТ аминокислоты рассчитывается по формуле:

Для моноаминодикарбоновых кислот рI рассчитывается как полусумма значений рК a- и w-карбоксильных групп, для диаминомонокарбоновых кислот – как полусумма значений рК a- и w-аминогрупп.

Существуют заменимые аминокислоты, которые могут синтезироваться в организме человека, и незаменимые, которые в организме не образуются и должны поступать с пищей.

Незаменимые аминокислоты: валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан, фенилаланин.

Заменимые аминокислоты: глицин, аланин, аспарагин, аспартат, глутамин, глутамат, пролин, серин.

Условно заменимые (могут синтезироваться в организме из других аминокислот): аргинин (из цитруллина), тирозин (из фенилаланина), цистеин (из серина), гистидин (при участии глутамина).

Содержание различных аминокислот в белках неодинаково.

Читайте так же:  Креатин моногидрат для девушек

Для открытия в биологических объектах и количественного определения аминокислот используют реакцию с нингидрином.

Дата добавления: 2015-03-19 ; просмотров: 649 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Аминокислоты

Аминокислоты — это органические бифункциональные соединения, в состав которых входят карбоксильная группа —СООН и аминогруппа —NH2. В зависимости от взаимного расположения обеих функциональных групп различают ά-,β -, γ -аминокислоты и т. д.:

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы. Обычно рассматривают только ά-аминокислоты, поскольку другие аминокислоты в природе не встречаются.

[1]

В процессе биосинтеза белка в полипептидную цепь включаются 20 важнейших α-аминокислот, кодируемых генетическим кодом.

Общая формула α-аминокислот

Аминокислоты можно классифицировать по нескольким признакам:

1). По способности человека синтезировать аминокислоты из предшественников:

Незаменимые: Триптофан, Фенилаланин, Лизин, Треонин, Метионин, Лейцин, Изолейцин, Валин;

Заменимые: Тирозин, Цистеин, Гистидин, Аргинин, Глицин, Аланин, Серин, Глутамин, Глутаминовая кислота, Аспарагиновая кислота, Аспарагин, Пролин

Некоторые заменимые аминокислоты синтезируются в организме человека в недостаточных количествах и должны поступать с пищей (гистидин и аргинин).

2). Аминокислоты делятся на протеиногенные (20 α-аминокислот) и непротеиногенные (4 аминокислоты).

3).По функциональным группам:

Алифатические моноаминомонокарбоновые: аланин, валин, глицин, изолейцин, лейцин.

Оксимоноаминокарбоновые: серин, треонин.

Моноаминодикарбоновые: аспарагиновая кислота, глутаминовая кислота. Амиды моноаминодикарбоновых: аспарагин, глутамин.

Диаминомонокарбоновые: аргинин, гистидин, лизин.

Серосодержащие: цистеин (цистин), метионин.

Ароматические: фенилаланин, тирозин.

Гетероциклические: триптофан, гистидин.

Иминокислоты: пролин (также входит в группу гетероциклических).

4).По химической природе радикаловприведены в таблице 4.

Таблица 4. Важнейшие протеиногенные аминокислоты.

Важнейшие непротеиногенные аминокислоты.

β — Аланин

Орнитин

Цитруллин

γ – Аминомасляная кислота

Все α-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (α-атом) и могут существовать в виде оптических изомеров. Оптическая изомерия природных α-аминокислот играет важную роль в процессах биосинтеза белка. Типичные белки природного происхождения, состоят из L-аминокислот. D-аминокислоты и L-аминокислоты отличаются друг от друга по вкусу. Например, D-аспарагиновая кислота не имеет вкуса, а ее стереоизомер L-аспарагиновая кислота обладает мясным вкусом.

Аминокислоты

Аминокислоты — строительные блоки белков. Общее строение, физико-химические свойства аминокислот

Строительными блоками белков служат 20 различных, но весьма сходных по строению, аминокислот, все они содержат аминную (NН2), карбоксильную (-СООН), радикальную (R-) группы и атом водорода связанные с ассиметричным a-углеродным атомом. Аминокислоты отличаются друг от друга строением R-группы. Все аминокислоты, за исключением глицина, оптически активны и могут существовать в виде L- и D- формы. В составе белков всех организмов обнаруживаются только a-аминокислоты L — ряда. D — формы аминокислот встречаются редко, в составе клеточных стенок некоторых микроорганизмов, пептидных антибиотиков, организмами животных и растений не усваиваются.

В водных растворах при рН близких к физиологическим (от б до 8) a-аминокислоты превращаются в биполярные ионы, т.к. a-СООН (кислая) группа диссоциирует, отдавая протон (Н+), заряжается отрицательно;

a-NH2 (щелочная) группа принимает протон (протонируется) и заряжается положительно:

COO- Биполярность молекул обуславливает хорошую

I растворимость большинства аминокислот в воде. В

H3

a-C -H кислых растворах (при рН 6-1) аминокислоты

I присутствуют в виде положительных ионов, а в

R щелочных (рH 8-I2) — в виде отрицательных ионов, т.е. аминокислоты являются амфотерными веществами с буферными свойствами.

Важнейшим свойством a-аминокислот является их способность конденсироваться, соединяться между собой пептидной связью (-СО-NН-), которая образуется при взаимодействии a-СОО- группы первой аминокислоты с a

H3 группой второй аминокислоты с отщеплением Н2О:

ï ï

+ CH + COO- + CH NH COO-

H3N COO- + H3N-CH H3N CO CH

Аминокислоты отличаются друг от друга

Глава III. БЕЛКИ

§ 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ

Природные аминокислоты

Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью стандартными аминокислотами. Они являются a-аминокислотами и отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

Пространственная изомерия

У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом:

Для их обозначения, как и для углеводов, используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.

Интересно знать! В белке зубов – дентине – L-аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования зубов в дентине содержится только L-аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D-аспарагиновая кислота. Чем старше человек, тем выше содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

Химические свойства

Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

Читайте так же:  Лекарство аргинин инструкция по применению

При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион:

В щелочной среде образуется анион:

Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов). Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом:

Связь, соединяющая две аминокислоты, носит название пептидной связи. Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

Аналогично образуются трипептиды, тетрапептиды и т.д.:

H2N – лиз – ала – гли – СООН – трипептид

H2N – трп – гис – ала – ала – СООН – тетрапептид

H2N – тир – лиз – гли – ала – лей – гли – трп – СООН – гептапептид

Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название олигопептиды.

Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам — метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса различным продуктам, напиткам.

Классификация аминокислот

Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:

К неполярным (гидрофобным) относятся аминокислоты с неполярными алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин и тирозин), HS-группу (цистеин), амидную группу (глутамин, аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Видео удалено.
Видео (кликните для воспроизведения).

Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка.

Источники


  1. Новоселов, Владимир Восстановление после гепатита. Рекомендации диетолога / Владимир Новоселов. — М.: Невский проспект, 2016. — 160 c.

  2. Николайчук, Л. В. 1000 рецептов больным сахарным диабетом / Л.В. Николайчук, Н.П. Зубицкая. — М.: Книжный дом, 2004. — 160 c.

  3. Онипко, В.Д. Книга для больных сахарным диабетом / В.Д. Онипко. — Москва: Огни, 2001. — 192 c.
Аминокислоты отличаются друг от друга
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here