Аминокислоты тема по химии

Сегодня предлагаем ознакомится со статьей на тему: аминокислоты тема по химии с профессиональным описанием и объяснением.

Аминокислоты тема по химии

Общую формулу простейших аминокислот можно записать так:

Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, их реакции отличаются от характерных свойств карбоновых кислот и аминов.

Получение

Аминокислоты можно получить из карбоновых кислот, заместив в их радикале атом водорода на галоген, а затем на аминогруппу при взаимодействии с аммиаком. Смесь аминокислот обычно получают кислотным гидролизом белков.

Аминогруппа —NН2 определяет основные свойства аминокислот, так как способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные органические соединения.

Со щелочами они реагируют как кислоты. С сильными кислотами — как основания-амины.

Кроме того, аминогруппа в молекуле аминокислоты вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:

Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависимости от состава радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты обладают оптической активностью, так как содержат атомы углерода (асимметрические атомы), связанные с четырьмя различными заместителями (исключение составляет амино-уксусная кислота — глицин). Асимметрический атом углерода обозначают звездочкой.

Как вы уже знаете, оптически активные вещества встречаются в виде пар антиподов-изомеров, физические и химические свойства которых одинаковы, за исключением одного — способности вращать плоскость поляризованного луча в противоположные стороны. Направление вращения плоскости поляризации обозначается знаком (+) — правое вращение, (-) — левое вращение.

Различают D-аминокислоты и L-аминокислоты. Расположение аминогруппы NH2 в проекционной формуле слева соответствует L-конфигурации, а справа — D-конфигурации. Знак вращения не связан с принадлежностью соединения к L- или D-ряду. Так, L-ce-рин имеет знак вращения (-), а L-аланин — (+).

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым, так как они не синтезируются в организме человека. Незаменимыми являются такие аминокислоты, как валин, лейцин, изолейцин, фени-лалалин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей (табл. 7). Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

[3]

Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки—NH—СО—, например:

H2N—(СН2)5—СООН + Н—NH—(СН2)5—СООН —>
аминокапроновая кислота

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.

К ним, кроме названного выше синтетического волокна капрон, относят, например, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических волокон пригодны аминокислоты с расположением амино- и карбоксильной групп на концах молекул (подумайте почему).

Таблица 7. Суточная потребность организма человека в аминокислотах

Полиамиды а-аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиди, трипептиды, полипептиды. В таких соединениях группы —NР—СО— называют пептидными.

Изомерия и номенклатура

Изомерия аминокислот определяется различным строением углеродной цепи и положением аминогруппы. Широко распространены также названия аминокислот, в которых положения аминогруппы обозначаются буквами греческого алфавита. Так, 2-аминобутановую кислоту можно назвать также а-аминомасляной кислотой:

В биосинтезе белка в живых организмах участвуют 20 аминокислот, для которых применяют чаще исторические названия. Эти названия и принятые для них русские и латинские буквенные обозначения приведены в таблице 8.

1. Запишите уравнения реакций аминопропионовой кисло-; ты с серной кислотой и гидроксидом натрия, а также с метиловым спиртом. Всем веществам дайте названия по международной номенклатуре.

2. Почему аминокислоты являются гетерофункциональными соединениями?

3. Какими особенностями строения должны обладать аминокислоты, используемые для синтеза волокон, и аминокислоты, участвующие в биосинтезе белков в клетках живых организмов?

4. Чем отличаются реакции поликонденсации от реакций полимеризации? В чем их сходство?

5. Как получают аминокислоты? Запишите уравнения реакций получения аминопропионовой кислоты из пропана.

Читайте так же:  Солгар витамины для кожи волос

6. Определите строение а-аминокислоты, если известно, что она содержит 15,73% азота.

7*. Смесь массой 30 г, содержащая аминоуксусную кислоту и уксусный альдегид, для солеобразования требует 5,38 л хлороводорода (н. у.) или 10,08 г оксида кальция. Определите массовые доли веществ в исходной смеси.

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Аминокислоты тема по химии

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

Аминокислоты тема по химии

II семестр

Тема 5. НИТРОГЕНОСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Урок 52

Тема урока. Аминокислоты. Изомерия аминокислот. Особенности химических свойств аминокислот, обусловленные наличием амино — и карбоксильной групп. Биполярный ион

Цели урока: формировать знания учащихся о бифункциональные органические соединения; показать их состав и строение на примере аминокислот; ознакомить учащихся с молекулярной и структурной формулами аминокислот — бифункциональных соединений, содержащих амино — и карбоксильну функциональные группы, их физическими и химическими свойствами; показать амфотерный характер аминокислот; формировать умения и навыки составлять химические формулы на примере гомологического ряда аминокислот; изучить распространение аминокислот в природе, их биологическую роль, применение.

Тип урока: изучение нового материала.

Формы работы: рассказ учителя, фронтальная работа.

Демонстрация 3. Доказательство наличия функциональных групп в растворах аминокислот.

Оборудование: таблица аминокислот.

II. Проверка домашнего задания.

Вспомним из биологии:

♦ Какую роль играют аминогруппы в органических соединениях?

♦ Докажите на примерах, что амины проявляют свойства оснований.

♦ какие амины легче вступают в химические реакции: первичные, вторичные или третичные?

♦ Приведите примеры известных вам органических веществ, содержащих аминогруппы.

Вещества, содержащие одну или несколько аминогрупп, известные вам из биологии, называются аминокислотами.

III. Изучение нового материала

1. Рассказ учителя

Аминокислоты — нитрогеносодержащие органические вещества, в молекулах которых содержится аминогруппа — NH 2 и карбоксильная группа — COOH , связанные с углеводородным радикалом.

Общая формула аминокислот: H 2 N — R — COOH .

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот с добавлением приставки амино — и указанием места расположения аминогруппы относительно карбоксильной группы.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальной названию карбоновой кислоты добавляется приставка амино — с указанием положения аминогруппы буквой греческого алфавита. Например:

Для α-аминокислот R — CH ( NH 2) COOH , которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Если в молекуле аминокислоты содержатся две аминогруппы, то в ее названии используется приставка діаміно-, три группы — NH 2 — три — амино — и т. д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом -діова или -тріова кислота:

Простейший представитель класса аминокислот имеет формулу:

H 2 N — CH 2 — COOH — аміноетанова (или амінооцтова) кислота — первый член гомологического ряда одноосновных насыщенных аминокислот.

Демонстрация 3. Доказательство наличия функциональных групп в растворах аминокислот

В зависимости от взаимного расположения карбоксильной и аминогрупп различают α-, β-, γ — и т. д. аминокислоты.

Чаще всего термин «аминокислота» применяют для обозначения карбоновых кислот, аминогруппа которых находится в-положении, то есть для а-аминокислот. Общая формула α-аминокислот можно представить так:

Читайте так же:  Витамины в12 с кислотой

В зависимости от природы радикала ( R ) аминокислоты делятся на алифатические, ароматические и гетероциклические.

В таблице приведены важнейшие аминокислоты — те, что входят в состав белков.

Сокращенная(трибуквена) название аминокислотного остатка в макромолекулах пептидов и белков

Те, что содержат группу — OH

Те, что содержат группу — COOH

Те, содержащие группу NH 2 CO —

NH2CO — CH2 — CH2-

Те, содержащие группу NH 2 —

CH3 — S — CH2 — CH2-

Рассматриваем образцы аминокислот и таблица с формулами и названиями аминокислот.

По физическим свойствам аминокислоты — белые кристаллические вещества, хорошо растворимые в воде, многие из них имеют сладкий вкус.

Аминокислоты широко распространены в природе. Это кирпичики, из которых построены все растительные и животные белки.

2. Изомерия аминокислот

Кроме изомерии, обусловленной строением карбонового скелета и положением функциональных групп, для α-аминокислот характерна оптическая (зеркальная) изомерия. Все α-аминокислоты, кроме глицина, оптически активны. Например, аланин имеет один асимметрический атом Углерода (отмечен звездочкой):

Итак, он существует в форме оптически активных энантиомеров:

Все природные а-аминокислоты принадлежат к L -ряду.

3. Физические и химические свойства аминокислот

Аминокислоты являются кристаллическими веществами с высокими (свыше 250 °С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому не являются характерными. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем подобные неорганических соединений. Многие из аминокислот имеют сладкий вкус.

Особенности химических свойств обусловлены одновременным наличием в молекулах двух функциональных групп: основной H 2 N — , и кислотной — COOH . Поэтому аминокислоты по химическим свойствам — амфотерные органические соединения.

♦ Как действуют аминокислоты на индикаторы? (Не будут изменять их расцветки) Почему?

♦ Какие химические свойства будут проявлять аминокислоты? (Все присущие карбоновым кислотам)

Некоторые свойства аминокислот, в частности высокая температура плавления, объясняются их строением. Кислотная (- COOH ) и основная (- NH 2) группы в молекуле аминокислоты взаимодействуют друг с другом, образуя внутренние соли (биполярные ионы). Например, для глицина:

Вследствие наличия в молекулах аминокислот функциональных групп кислотного и основного характера α-аминокислоты являются амфотерными соединениями, т. е. они образуют соли как с кислотами, так и со щелочами.

Как основы аминокислоты взаимодействуют с кислотами (реакция присоединения):

Кислотные свойства аминокислот проявляются в реакциях со щелочами:

За кислотными свойствами аминокислоты сильнее, чем соответствующие карбоновые кислоты.

В реакции со спиртами образуются эфиры.

Задачи. Запишите уравнения реакций взаимодействия амінооцтової кислоты с магнием, кальций оксидом, натрий гидроксидом, натрий карбонатом.

Важное свойство аминокислот — способность взаимодействовать друг с другом благодаря наличию двух функциональных групп.

Міжмолекулярна взаимодействие α-аминокислот приводит к образованию пептидов. В результате взаимодействия двух α-аминокислот образуется дипептид.

Міжмолекулярна реакция с участием трех α-аминокислот приводит к образованию трипептида и т. д.

Фрагменты молекул аминокислот, образующих пептидную цепь, называются аминокислотными остатками, а связь — CO — NH — пептидним связью.

Важнейшие природные полимеры — белки — относятся к полипептидам, т. е. являются продуктами поликонденсации α-аминокислот.

5. Получение аминокислот

• Действие аммиака на галогенозаміщені карбоновые кислоты:

ClCH2 — COOH + 2H3N

H2N — CH2 — COOH + NH3Cl

IV . Первичное применение полученных знаний

1) Вещество CH 3 — NH — CH ( CH 3 )2 относится к ряду:

б) ароматических аминов;

в) алифатических аминов;

2) Вещество, формула которого — C 6 H 5 — N ( CH 3 )2, называется:

3) Реакция, которую показывают на индикатор амины жирного ряда:

4) Характерной химической реакцией аминов, обусловленной наличием в их молекулах аминогруппы, являются:

а) радикальное замещение;

б) взаимодействие с кислотами с образованием солей;

в) електрофільне присоединения;

г) нуклеофильные присоединения.

Видео (кликните для воспроизведения).

5) Реакции, характерные для анилина:

6) В приведенной схеме превращений соединениями, которые относятся к классу аминов, являются:

7) Вычислите массу феніламоній хлорида, если до анилина массой 13,95 г добавили хлороводень, выделившийся на первой стадии хлорирования метана объемом 5 л (н. в.).

2. Самостоятельная работа

Задача 1. Запишите уравнения, доказывающие амфотерность амінооцтової кислоты.

Задание 2. Назовите аминокислоты аланин и лейцин по систематической номенклатуре.

Задание 3. Запишите уравнения получения дипептид из глицина и валина.

Подводим итоги урока, оценивает работу учащихся на уроке.

VI. Домашнее задание

Проработать материал параграфа, ответить на вопросы к нему, выполнить упражнения.

Творческое задание: предложите преобразования, с помощью которых можно получить амінооцтову кислоту из метана.

Подготовка к ЕГЭ по химии. Лекция по теме «Аминокислоты. Белки»

Муниципальное бюджетное образовательное учреждение
Средняя общеобразовательная школа села Старобурново
муниципального района Бирский район Республики Башкортостан
Тематические лекции
по химии для 11 класса
для подготовки к ЕГЭна 2015-2016 учебный годcоставила учитель химииАсылбаева Марина Евгеньевна
Тема 19. Азотсодержащие органические вещества.
19.2. Аминокислоты.
Аминокислоты — органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.
Это замещенные карбоновые кислоты, в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами.
Простейший представитель — аминоуксусная кислота H2N-CH2-COOH (глицин)

Читайте так же:  Фитнес дринк л карнитин

Свойства аминокислот
Физические свойства. Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:
Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.
Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН):

С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Химические свойства. Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:
H2N–CH2–COOH + HCl → [H3N+–CH2–COOH] Cl–
1. Как карбоновые кислоты образуют функциональные производные:
а) соли
H2N–CH2–COOH + NaOH → H2N–CH2–COO– Na+ + H2O
б) сложные эфиры
Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).
В) Практическое значение имеет внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона):

[2]

Межмолекулярное взаимодействие α-аминокислот приводит к образованию пептидов. При взаимодействии двух α-аминокислот образуется дипептид.

Заметим, что в искусственных условиях (вне организма) 2 различных аминокислоты могут образовать 4 изомерных дипептида (попробуйте представить их формулы).
Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.
Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.
Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е. представляют собой продукт поликонденсации α-аминокислот (часть VI, раздел 6.3).

Получение аминокислот
1. Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

2. Присоединение аммиака к α,β-непредельным кислотам с образованием β-аминокислот:
CH2=CH–COOH + NH3 → H2N–CH2–CH2–COOH
3. α-Аминокислоты образуются при гидролизе пептидов и белков.

4. Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот):
O2N-C6H4-COOH + 3H2 →H2N-C6H4-COOH + 2H2O
5. Биотехнологический способ получения чистых α-аминокислот в виде индивидуальных оптических изомеров. Этот способ основан на способности специальных микроорганизмов вырабатывать в питательной среде определенную аминокислоту.
Тема 19. Азотсодержащие органические вещества.
19.2. Белки.
Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями.
Формально образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:

При взаимодействии двух молекул α-аминокислот происходит реакция между аминогруппой одной молекулы и карбоксильной группы — другой. Это приводит к образованию дипептида, например:

Следует отметить, что в искусственных условиях (вне организма) две различных аминокислоты могут образовать 4 изомерных дипептида (в данном случае — глицилаланин, аланилглицин, аланилаланин и глицилглицин).
Из трех молекул α-аминокислот (глицин+аланин+глицин) можно получить трипептид:
H2N-CH2CO-NH-CH(CH3)-CO-NH-CH2COOH

Вторичная структура — конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры — α-спираль.
Другая модель — β-форма («складчатый лист»), в которой преобладают межцепные (межмолекулярные) Н-связи.

Третичная структура — форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.

Четвертичная структура — агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

  • belki
    Размер файла: 191 kB Загрузок: 28

Презентация по химии на тему: «Аминокислоты»

Аминокислоты — органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH2.

Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

Физические, химический свойства, способы поучения и применения.

Содержимое разработки

Аминокислоты — органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .

Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

Читайте так же:  Аргинин инструкция по применению в бодибилдинге

Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Для α-аминокислот R-CH(NH 2 )COOH

, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Таблица. Некоторые важнейшие α-аминокислоты

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино- , три группы NH 2 – триамино- и т.д.

Аминокислоты тема по химии

Благодаря способности аминокислот к поликонденсации образуются полиамиды – белки, пептиды, а также энант, капрон и нейлон. При поликонденсации ɛ-аминокапроновой кислоты получается полимер капрон. Из капроновой смолы получают не только волокна, но и пластмассовые изделия.

Энант, капрон и нейлон применяются в промышленности при производстве корда, прочных тканей, сетей, канатов, веревок, трикотажных и чулочных изделий.

Аминокислоты широко применяются в медицинской практике в качестве лекарственных средств.

Аминокислоты прописываются при сильном истощении, после тяжелых операций, их используют для питания больных.

Из полиаминокислот получают хороший материал для хирургии.

Аргинин в сочетании с аспартатом или глутаматом помогает при заболевании печени.

Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

В медицинских учреждениях аминокислоты применяются в качестве парентерального питания пациентов с заболеваниями желудочно-кишечного тракта (язва желудка), при лечении болезней печени, ожогов, малокровия, при нервно-психических заболеваниях.

Глутаминовая кислота используется в детской психиатрии для лечения слабоумия и последствий родовых травм, при нарушениях мозгового кровообращения после инсульта, при атеросклерозе мозговых сосудов, потере памяти.

Гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

Глицин является медиатором торможения в ЦНС. В медицинской практике применяется для лечения алкоголизма. Производное глицина – бетаин улучшает процессы пищеварения.

Метионин и его активные производные используются в лечении и профилактике болезней печени. Метионин защищает организм при отравлении бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды.

Некоторые аминокислоты используются в качестве самостоятельных лекарственных средств (аргинин, цистеин, ароматические аминокислоты).

Аминокислоты в сельском хозяйстве применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат недостаточное количество белков. Лизин, лейцин, метионин, треонин, триптофан добавляют в корма сельскохозяйственных животных.

Аминокислоты метионин, глутаминовая кислота и валин применяются для защиты растений от болезней, а аланин и глицин, обладающий гербицидным действием, используется для борьбы с сорняками.

Аминокислоты используются в микробиологической промышленности для приготовления культуральных сред и как реактивы.

В пищевой промышленности аминокислоты применяются в качестве вкусовых добавок.

Наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот.

Добавка глутаминовой кислоты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в пищевой промышленности.

[1]

Натриевая соль глутаминовой кислоты (глутамат натрия) известна как «пищевая добавка E621» или «усилитель вкуса».

Глутаминовая кислота является важным компонентом при замораживании и консервировании.

Благодаря присутствию глицина, метионина и валина, во время термической обработки продуктов питания удается получить специфические ароматы хлебобулочных и мясных изделий.

Аминокислоты цистеин, лизин и глицин используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту; замедляющих пероксидное окисление липидов.

Глицин применяется при производстве безалкогольных напитков и приправ.

Аминокислоты также являются компонентами спортивного питания (в изготовлении которого применяется, как правило, валин, лейцин, изолейцин, аланин, лизин, аргинин и глутамин), использующегося спортсменами, а также людьми, занимающимися бодибилдингом, фитнесом

В химической промышленности введение в такие аминокислоты, как глутаминовая или аспарагиновая кислоты, гидрофобных группировок дает возможность получать поверхностно-активные вещества (ПАВ), широко используемые в синтезе полимеров, а также при производстве моющих средств, эмульгаторов, добавок к моторному топливу.

Белки и аминокислоты

Белки (син. протеины) — высокомолекулярные органические вещества, построенные из остатков аминокислот. По своему биологическому значению принадлежат к числу важнейших составных частей организма.

Несомненно, белки абсолютно необходимы для жизни растений, животных и грибов. Именно вследствие такого большого значения белки получили названия протеинов (греч. protos — первый, главный).

Качественной реакцией на белки служит ксантопротеиновая реакция. Ее проводят путем добавления к раствору белка HNO3(конц.) до тех пор, пока не прекратится выпадение осадка. Осадок окрашивается в характерный желтый цвет.

Читайте так же:  Спортивное питание фитнес клуб

Аминокислота

Аминокислота — органическая кислота, содержащая, по меньшей мере, одну карбоксильную группу (COOH) и одну аминогруппу (NH2). Аминокислоты являются основной составляющей всех белков.

В построении белков участвуют 20 наиболее распространенных аминокислот. На данном этапе учить их наизусть не обязательно, эта задача настигнет вас на кафедре биохимии 😉

И все же для успешного изучения данной темы мы возьмем за основу две аминокислоты: глицин и аланин.

Я хочу вас обрадовать (надеюсь, что обрадую)). Если вы успешно изучили темы: карбоновые кислоты, амины — то вы уже знаете химические свойства аминокислот!

Они напоминают амфотерные соединения: по аминогруппе вступают в реакции с кислотами, по карбоксильной — с основаниями. Мы разберем их подробнее чуть ниже.

Получение аминокислот

Аминокислоты можно получить в реакции аммиака с галогенкарбоновыми кислотами.

Химические свойства аминокислот
  • Основные свойства

За счет наличия аминогруппы, аминокислоты проявляют основные свойства. Реагируют с кислотами.

По карбоксильной группы аминокислоты способны вступать в реакции с металлами, основными оксидами, основаниями и солями более слабых кислот.

Аминокислоты способны вступать в реакцию этерификации, образуя сложные эфиры.

В молекуле белка аминокислоты связаны друг с другом пептидной связью. Она образуется между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты.

©Беллевич Юрий Сергеевич

Данная статья является интеллектуальной собственностью Беллевича Юрия Сергеевича. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Пройдите тест
для закрепления знаний

Качественной реакцией на белки служит ксантопротеиновая реакция.

Аминокислоты обладают амфотерными (двойственными) свойствами.

Аминокислоты объединяются в белки.

Между аминокислотами способны образоваться пептидные связи.

Аминокислоты. Свойства аминокислот.

Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.

Аминокислоты.

Аминокислоты – органические бифункциональные соединения, в состав которых входит карбоксильная группа –СООН, а аминогруппа — NH2.

Разделяют α и β — аминокислоты:

В природе встречаются в основном α-кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С5Н9NO2):

Самая простая аминокислота – глицин. Остальные аминокислоты можно разделить на следующие основные группы:

1) гомологи глицина – аланин, валин, лейцин, изолейцин.

2) серосодержащие аминокислоты – цистеин, метионин.

3) ароматические аминокислоты – фенилаланин, тирозин, триптофан.

4) аминокислоты с кислотным радикалом – аспарагиовая и глутаминовая кислота.

5) аминокислоты с алифатической гидрокси-группой – серин, треонин.

6) аминокислоты с амидной группой – аспарагин, глутамин.

7) аминокислоты с основным радикалом – гистидин, лизин, аргинин.

Изомерия аминокислот .

Во всех аминокислотах (кроме глицина) атом углерода связан с 4-мя разными заместителями, поэтому все аминокислоты могут существовать в виде 2-х изомеров (энантиомеров). Если L и D – энантиомеры.

Физические свойства аминокислот.

Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в неполярных растворителях.

Получение аминокислот.

1. Замещение атома галогена на аминогруппу в галогензамещеных кислотах:

Химические свойства аминокислот.

Аминокислоты – это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы – аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:

Кислотно-основные превращение можно представить в виде:

Реагирует с азотистой кислотой:

Реагируют со спиртами в присутствие газообразного HCl:

Качественные реакции аминокислот.

Окисление нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Иминокислота пролин дает с нингидрином желтый цвет.

Видео (кликните для воспроизведения).

2. При нагревании с концентрированной азотной кислотой протекает нитрование бензольного кольца и образуются соединения желтого цвета.

Источники


  1. Нагорный, В. Э. Гимнастика для мозга / В.Э. Нагорный. — М.: Советская Россия, 1972. — 128 c.

  2. Комплексная терапия при заболеваниях органов пищеварения. — М.: Медицина, 1977. — 334 c.

  3. Зейлигер, М. Л. Материалы для исследования физического развития учащихся в начальных школах г. Петрозаводска. Диссертация на степень доктора медицины / М.Л. Зейлигер. — М.: Типография Штаба Отдельного Корпуса Жандармов, 2013. — 99 c.
Аминокислоты тема по химии
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here