Белок из трех аминокислот

Сегодня предлагаем ознакомится со статьей на тему: белок из трех аминокислот с профессиональным описанием и объяснением.

Белок из трех аминокислот

Белки — высокомолекулярные органические соединения. Они играют огромную роль в жизнедеятельности клеток и тканей, являются важнейшей составной частью всего живого. «Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явления жизни» (Маркс К., Энгельс Ф. Соч., т. 20, с. 83). С белками в живом организме связаны важнейшие функции: рост и развитие клеток, пищеварение, размножение, передача наследственных признаков, раздражимость, мышечные сокращения, образование антигенов и антител, обратимое связывание и перенос жизненно важных веществ и др. Биологические катализаторы — ферменты являются белковыми веществами.

Белки — основной материал, из которого строится структура живой, клетки.

В состав белков входят (в процентах): углерод (50,6- 54,5), кислород (21,5-23,5), азот (15,0-17,6, в среднем 16), водород (6,5-7,3), сера (0,3-2,5), фосфор (0,5-0,6).

Суммарное количество белков в тканях определяют, умножая общее содержание в них азота на коэффициент 6,25.

Все белковые вещества разделяют на две группы: простые (протеины) и сложные белки (протеиды). Простые белки при гидролизе распадаются только на аминокислоты. В состав сложных белков, кроме аминокислот, входят также вещества небелковой природы — нуклеиновые

кислоты, углеводы, липиды, пигменты, фосфорная кислота, металлы и т. д.

В построении молекул различных белков участвуют более 20 аминокислот, которые могут быть разделены на две большие группы: ациклические и циклические. В зависимости от числа аминогрупп и карбоксильных групп в молекуле ациклические аминокислоты делят на: а) моноамшюмонокарбоновые, содержащие по одной амино- и карбоксильной группе; б) моноаминодикарбоновыс, в состав молекулы которых входят одна амино- и две карбоксильные группы; в) диаминомонокарбоновые, для которых характерно наличие в молекуле двух аминогрупп и одной карбоксильной. Циклические аминокислоты разделяют на карбоциклические и гетероциклические. В группу циклических включают также и иминокислоты.

В белковой молекуле аминокислоты соединены между собой пептидными связями. При образовании пептидной связи карбоксильная группа одной аминокислоты взаимодействует с аминной группой другой, при этом выделяется молекула воды:

Изучение распределения электронов в пептидной связи показало, что здесь имеет место явление мезомерии, или резонанса. Поэтому пептидная связь не является строго ни двойной, ни простой, занимая промежуточное положение, и схематически может быть представлена так:

Это подтверждают также данные, характеризующие расстояние между атомами углерода и азота для разных типов связи. Для двойной связи оно составляет 1,28А, простой — 1,48А, тогда как для пептидной -1,32А.

Резонанс является фактором, повышающим устойчивость химических соединений, и его наличием объясняется прочность пептидной связи.

Соединение из двух аминокислот носит название дипептид (например, глицил-аланин), из трех — трипептид, из четырех — тетрапептид и т. п., а из многих аминокислот — полипептид.

В образовании пептидной связи у моноаминодикар-боновых и диаминомонокарбоновых кислот принимают участие только аминогруппы и карбоксильные группы, связанные с а-углеродным атомом.

В пространственной конфигурации белковой молекулы имеют место различные типы связей. Чаще всего это водородные связи, но большую роль играют также дисульфидные, эфирные (ортофосфатные, пирофосфатные), фосфоамидные, ионные и др.

Аминокислоты и белки обладают амфотерным характером. При диссоциации как свободных аминогрупп, так и свободных карбоксильных групп они приобретают заряды: в кислой среде — положительный, в щелочной — отрицательный.

Регулируя pH среды, можно достигнуть такого состояния, когда диссоциация аминогрупп и карбоксильных групп будет одинаковой, т. е. уравняется количество положительных и отрицательных зарядов, следовательно, общий заряд частицы окажется равным нулю. Значение pH, при котором сумма положительных зарядов равна сумме отрицательных зарядов белковой частицы, называется изоэлектрической точкой. В изоэлектрической точке растворы белка весьма неустойчивы, белок из них легко выпадает в осадок. Значение изоэлектрической точки характерно для каждого белка и зависит от аминокислотного состава. Таким образом, меняя концентрацию водородных ионов, можно изменить заряд белковых частиц.

Белки отличаются различной растворимостью.

При растворении белков в воде происходит гидратация их молекул. Вокруг каждой из них образуется водная оболочка (гидросфера). Наличие оболочек, состоящих из ориентированных в пространстве молекул воды, является наряду с зарядом белковых частиц фактором устойчивости белковых растворов. Под действием факторов, уменьшающих гидратацию белковых частиц (например, водоотнимающих средств) и нейтрализующих их заряд, растворимость

белков понижается и они могут выпасть в осадок.

Качественные реакции на аминокислоты, пептиды и белки можно разделить на две группы: а) цветные реакции, обусловленные аминокислотами и пептидами; б) реакции осаждения, в основе которых лежат изменения физико-химических свойств белковых молекул.

Белок из трех аминокислот

Б елками, или протеинами, называют высокомолекулярные азотсодержащие соединения, состоящие из аминокислот, соединённых в цепочку пептидной связью. Белки синтезируются из аминокислот и превращаются в аминокислоты при переваривании в желудочно-кишечном тракте или катаболизме в организме. Функции белков в клетках живых организмов очень разнообразны — они так или иначе участвуют практически во всех аспектах жизнедеятельности организма.

Природных аминокислот насчитывается около 150, но при синтезе в живых организмах, в большинстве случаев, используется 20 стандартных аминокислот.

С точки зрения питания аминокислоты делят на незаменимые и заменимые.

Незаменимые аминокислоты не синтезируются в организме человека и обязательно должны поступать с пищей. К ним относятся девять аминокислот: валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, гистидин. Гистидин относят к незаменимым аминокислотам только для новорожденных. Если количество этих аминокислот в пище недостаточно, нормальное развитие и функционирование организма человека нарушается.

Заменимыми называются аминокислоты, которые организм способен синтезировать из других заменимых аминокислот или азота незаменимых аминокислот. К ним относятся остальные 11 аминокислот.

Определенное количество заменимых аминокислот также должно поступать с пищей, иначе на их образование станут расходоваться незаменимые аминокислоты. Полностью метаболически заменимыми считаются только глутаминовая кислота и серин.

Читайте так же:  Жиросжигатели рейтинг лучших 2018

Классификация аминокислот на заменимые и незаменимые также не лишена недостатков, например тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

Современные данные свидетельствуют о том, что биосинтез заменимых аминокислот в количествах, обеспечивающих полностью потребности организма чаще всего невозможен, поэтому следует помнить, что незаменимые и заменимые аминокислоты в равной степени важны для построения белков организма.

Аминокислоты, составляющие белки тела и пищи

Свойства белков определяются набором аминокислот, из которых они состоят, общим числом аминокислот и последовательностью, в которой они соединяются друг с другом. Комбинация из 20 аминокислот, каждая из которых может встречаться в белке сколько угодно раз, позволяет создавать практически неограниченное количество уникальных белковых молекул. Организм человека содержит, по меньшей мере, 30 000 различных белков, только в печени насчитывается более 1000 белков-ферментов.

Функции белка

Белки являются обязательными компонентами всех живых клеток. Одна пятая часть тела человека состоит из белка. Белок содержится практически во всех органах и тканях. Только моча и желчь в норме не содержат белка. Половина всего белка находится в мышцах, 1/5 — в костях и хрящах, 1/10 — в коже. Волосы, кожа, ногти также содержат белок кератин. Этот белок не переваривается и не усваивается в кишечнике.

Биологические функции белков крайне разнообразны. С участием белков осуществляются рост и размножение клеток. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген), сократительные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (альбумин) и другие функции. Белки составляют основу биологических клеточных мембран — важнейшей составной части клетки и клеточных органелл.

При участии белков регулируется и поддерживается нормальный водный баланс организма, сохраняются нормальные рН среды. Белки крови создают онкотическое давление, которое удерживает жидкость в кровеносных сосудах и препятствует накоплению жидкости во внеклеточном пространстве. При сниженном уровне белков в плазме крови онкотическое давление не уравновешивает осмотическое давление, которое выталкивает жидкость из сосудов. Это приводит к развитию отеков (т.н. «голодные отеки»).

Оценка качества пищевых белков

В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются и используются на образование новых белков организма либо расходуются на получение энергии, либо аминокислоты являются предшественниками для образования новых заменимых аминокислот. Качество пищевого белка определяется наличием в нем полного набора незаменимых аминокислот в определенном количестве и в определенном соотношении с заменимыми аминокислотами.

Качество пищевого белка оценивается рядом биологических и химических методов:

    Оценка биологической ценности белка
    Под биологической ценностью белка (или содержащей белок пищи) подразумевают долю усвоенного организмом азота от всего всосавшегося в ЖКТ азота. Измерение биологической ценности белка основывается на том, что усваивание азота организмом выше при адекватном содержании незаменимых аминокислот в пищевом белке, достаточном для поддержания роста организма.

Коэффициент эффективности белка
Показатель коэффициента эффективности белка основан на предположении, что прирост массы тела растущих животных пропорционален количеству потребленного белка.

Аминокислотный скор белка
Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в «идеальном» белке. Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

Понятие «идеальный» белок включает представление о гипотетическом белке высокой пищевой ценности, полностью удовлетворяющем потребность организма человека в незаменимых аминокислотах. Для взрослого человека в качестве «идеального» белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ. Аминокислотная шкала показывает содержание каждой из незаменимых аминокислот в 100 г стандартного белка.

Наиболее близки к «идеальному» белку животные белки мяса, яиц и молока. Большинство растительных белков содержат недостаточное количество одной или нескольких незаменимых аминокислот. Например, белки злаковых культур, а также полученные из них продукты неполноценны (лимитированы) по лизину и треонину. Белки ряда бобовых культур (соя и фасоль исключение) лимитированы по метионину и цистеину (60-70% оптимального количества).

В процессе тепловой обработки или длительного хранения продуктов из некоторых аминокислот могут образоваться не усвояемые организмом соединения, т.е. аминокислоты становятся «недоступными». Это снижает ценность белка.

Пищевая ценность белков может быть улучшена (т.е. увеличена биологическая ценность или аминокислотный скор по лимитирующим кислотам) путем добавления лимитирующей аминокислоты или внесения компонента с ее повышенным содержанием, или путем смешивания белков с различными лимитирующими аминокислотами. Так, биологическая ценность белка пшеницы может быть повышена добавлением 0,3-0,4% лизина, белка кукурузы — 0,4% личина и 0,7% триптофана. Приготовление смешанных блюд, содержащих животные и растительные продукты, способствует получению полноценных пищевых белковых композиций.

[2]

Переваривание белков и всасывание аминокислот

Все пищевые белки, состоящие из длинной цепи аминокислот, не способны всасываться в желудочно-кишечном тракте. Они расщепляются на свободные аминокислоты или фрагменты, состоящие из 2 или 3 аминокислот. Расщепление белков катализируют специфические пищеварительные ферменты — протеазы. Степень перевариваемости белков колеблется от 65% для некоторых растительных белков до 97% для белка яиц.

Свободные аминокислоты всасываются в кровоток и транспортируются в органы и ткани, в первую очередь в печень. Наибольшее количество аминокислот захватывается печенью, где синтезируются белки плазмы крови и специфические белки-ферменты. Аминокислоты, не участвующие в биосинтезе новых белковых молекул, подвергаются в печени процессу дезаминирования, т.е. отщеплению аминогруппы. В процессах дезаминирования участвуют активные формы витамина В6.

Азотсодержащий остаток аминокислот превращается в мочевину и экскретируется с мочой. Не содержащая азота часть молекулы аминокислот превращается в углеводы или жиры и окисляется для образования энергии или запасается в виде жира.

Читайте так же:  Спортивное питание набрать мышечную массу

Коэффициент перевариваемости белков пищи у человека

Продукты Коэффициент перевариваемости, %
Яйца 97
Молоко, сыры 95
Мясо, рыба 94
Кукуруза 85
Полированный рис 88
Цельное зерно пшеницы 86
Мука пшеничная 96
Крупа манная 99
Овсяные хлопья 86
Просо 79
Горох зрелый 88
Бобы 78

Потребность организма в белке

В организме человека отсутствует большое депо для запасания белков. Отчасти функцию депо выполняют белки плазмы крови и печени. Альбумин плазмы крови служит лабильным резервом белка, и для обеспечения жизненно необходимой потребности в аминокислотах происходит его расщепление. Глобулины плазмы крови не подвергаются расщеплению даже при истощении запасов альбумина.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы — на 93-95%, то белки хлеба — на 62-86%, овощей — на 80%, картофеля и некоторых бобовых — на 70%.

Однако смесь этих продуктов может быть биологически более полноценной в силу взаимного обогащения одних белков аминокислотами других.

На степень усвоения организмом белков оказывают влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т.д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренной тепловой обработке пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой обработке усвояемость снижается. При глубоком жареньи с образованием корочки и обугливании часть аминокислот разрушается или снижается усвоение белка из этих частей блюда или продукта.

Потребность в белке — это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается, с одной стороны, физиологическое состояние организма, а с другой — свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависят переваривание, всасывание и метаболическая утилизация аминокислот.

Потребность в белке состоит из двух компонентов. Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке. Второй компонент потребности в белке определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

Потребность в незаменимых аминокислотах в различном возрасте мг/кг в сутки

Белок из трех аминокислот

Белки сами по себе не являются незаменимыми компонентами рациона человека. Для нормального питания необходимы лишь содержащиеся в них незаменимые аминокислоты (табл. 26-10). Для взрослых людей незаменимыми являются девять аминокислот, суточная потребность в которых варьирует от 0,5 г (для триптофана) до 2 г (для лейцина, фенилаланина).

Таблица 26-10. Суточная потребность в незаменимых аминокислотах (для молодых мужчин)

Новорожденным и растущим детям необходима еще одна, десятая, аминокислота — аргинин. У взрослых аргинин образуется в достаточных количествах в печени в процессе синтеза мочевины (разд 19.16), однако детям для одновременного синтеза мочевины и необходимых организму белков образующегося таким путем аргинина не хватает.

Ежедневно молодым мужчинам рекомендуется потреблять 54 г белков, однако при этом подразумевается, что в пищу входят самые разнообразные белки растительного и животного происхождения. Из приведенных в табл. 26-10 данных следует, что по крайней мере 12 из 54 г белка должны приходиться на долю незаменимых аминокислот, а остальные 42 г на долю заменимых. Питательная ценность или качество данного белка зависит от двух факторов: (1) от его аминокислотного состава и (2) от его усвояемости. Белки значительно различаются по аминокислотному составу (разд. 6.3). Некоторые из них содержат полный набор незаменимых аминокислот в оптимальных соотношениях; другие могут не содержать одной или нескольких незаменимых аминокислот. Растительные белки, особенно белки пшеницы и других злаковых, не могут полностью перевариваться, так как белковая часть зерен защищена состоящей из целлюлозы и других полисахаридов оболочкой, которая не гидролизуется пищеварительными ферментами. Поскольку в кишечнике могут усваиваться только свободные аминокислоты, далеко не все аминокислоты продуктов растительного происхождения в действительности биологически доступны для организма человека.

Табл. 26-11 иллюстрирует качество некоторых пищевых белков.

[1]

Таблица 26-11. Качество белков некоторых пищевых продуктов

Для нормального синтеза белка в организме человека все незаменимые аминокислоты должны быть доступны одновременно. Если крыс кормить синтетической пищей, содержащей все незаменимые аминокислоты, кроме одной, а затем через 3 ч дать им недостающую аминокислоту, то крысы все равно не будут расти, поскольку аминокислоты не могут запасаться.

Химия, Биология, подготовка к ГИА и ЕГЭ

Аминокислоты

основа белковой жизни на Земле

А вы знаете, что многие ученые называют жизнь на земле «белковой»? Основу белка составляют аминокислоты. А как они появились на Земле?

Белки — это макромолекулы, имеющие большую молекулярную ( до 1,5 млн у.е.) массу. Все белки являются полимерами нерегулярного строения, состоящими из отдельных мономеров — аминокислот, определяющихся генетическим кодом.

Есть такая гипотеза, что в самом начале на Земле не было всех тех органических соединений, которые мы наблюдаем теперь. И в то далекое-предалекое время наша планета постоянно подвергалась бомбардировке метеоритами и кометами. И эти самые метеориты содержали в себе органические соединения, в том числе и аминокислоты. Получается, что жизнь на Землю принесли извне…

Аминокислота — вещество, имеющее двойственную природу:

  1. Аминокислот в белке много. Вплоть до нескольких тысяч!
  1. Аминокислоты в белке могут находиться в разной последовательности. Именно разные сочетания аминокислот в белковой цепи дает такую вариативность.
Читайте так же:  Можно ли есть спортивное питание

В природе известно 20 видов аминокислот.

они же полипептиды, они же протеины

Ф.Энгельс биологом не был, но дал такое определение жизни:

Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка

Конечно, это определение не научное и не затрагивает очень многие признаки живых систем, но определяет один самый важный момент —

жизнь на земле белковая

Строение и функции белков

Белки — полимеры, мономерами которых являются аминокислоты. В составе белков всего 20 аминокислот, а вот комбинаций этих аминокислот может быть очень много! За счет этого достигается разнообразие. Поэтому белков в природе огромное количество!

Белковый состав так и записывается — последовательностью аминокислот, которые обозначаются тремя буквами:

То, что показано на рисунке — последовательность аминокислот — это целая длинная большая молекула (то, что приведено здесь — это очень маленький белок, обычно такие молекулы на порядок длиннее).

В теме про аминокислоты мы уже рассмотрели механизм образования такого полимера — полипептида.

  • простые — состоят только из аминокислот;
  • сложные — кроме аминокислот содержат вещества небелковой природы.
Видео удалено.
Видео (кликните для воспроизведения).

Первичная структура (конформация) белка

— это именно эта последовательность — то, какие аминокислоты и в какой последовательности они соединены ковалентными связями.

Вторичная структура белка

Это спираль, которая образуется уже за счет межмолекулярных — водородных связей.

Третичная структура белка

Эта структура образована свернутыми спиралями — такое образование называется глобула.

Четвертичная структура белка

это совместное объединение нескольких схожих по строению третичных белковых структур (глобул или субъединиц) в единую молекулу с приобретением ею природных свойств.

Сами глобулы в этой структуре называют протомерами, а само четвертичное образование — мультимером.

Белки довольно легко подвергаются разрушению. Сначала «ломается» четвертичная, потом третичная, потом уже вторичная структура. Разрушить первичную структуру сложнее. Это уже, скорее, химическое взаимодействие.

Разрушение структур белка называется денатурацией. Свойства белка при этом теряются.

Самые известные денатуранты -температура (нагревание), спирт, кислоты и щелочи.

Простой и повседневный пример денатурации — яичница!

Ренатурация — обратный процесс — восстановление разрушенной структуры белка.

Функции белков

  • структурная — белок является обязательным компонентом любой мембраны, любого хряща…
  • почти все ферменты имеют белковую природу. Ферменты=биокатализаторы. На каждую реакцию есть свой фермент.

  • Гормоны имеют белковую природу.
  • Транспорт — белки переносят вещества через мембрану клетки, гемоглобин — кислород в крови…
  • Функций у белков очень много… то, что перечислено выше — только самые основные.

    Каждый вид растений и животных имеет особый, только ему присущий набор белков, т. е. белки являются основой видовой специфичности.

    • у разных видов есть одинаковые белки, выполняющие определенные функции (например, у собаки и человека за регуляцию сахара в крови отвечает гормон инсулин)
    • у представителей одного вида белки могут отличаться по строению (например, белки групп крови)

    Белки — основа жизни на Земле, и найти какие-либо процессы, проходящие в живом организме без их участия, практически невозможно…

    Редко, но все же встречаются в вопросах ЕГЭ такие термины:

    • дистальные белки — белки мембраны клетки

    Аминокислоты — строительный материал белка

    Человек, который заинтересовался понятием белков, всегда приходит к понятию аминокислот, так как аминокислоты являются строительным материалом для белка. Это будет рассмотрено в данной статье, а также значения некоторых сопутствующих иностранных слов – пептид, полипептид, протеин.

    Понятие аминокислоты

    Общая структура аминокислот

    В общем смысле под аминокислотами понимают органические кислоты, содержащие одну или несколько аминогрупп (-NH2). Из этих всех аминокислот нас будут интересовать только аминокарбоновые, так как именно они являются строительным материалом белков (а есть еще и аминосульфоновые, аминофосфоновые, аминоарсиновые). В таком контексте аминокарбоновые кислоты принято называть просто аминокислоты. Исходя из этого, можно дать следующее определение: аминокислоты — это органические соединения, в молекуле которых одновременно содержатся карбоксильные ( -СООН) и аминные группы, связаны с одним и тем же атомом углерода. Аминокислоты отличаются друг от друга строением только одной части молекулы, а именно боковой группы, обозначаемой в общей структурной формуле символом R.

    Понятие пептида

    Две молекулы одной и той же или разных аминокислот могут ковалентно связываться друг с другом при помощи замещенной амидной связи, называемой пептидной связью, с образованием дипептида.

    20 аминокислот, из которых строятся белки

    Пептидная связь образуется путем отщепления компонентов молекулы воды от карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты под действием сильных конденсирующих агентов. Три аминокислоты могут соединиться аналогичным образом при помощи двух петидных связей и образовать трипептид; точно также можно получить тетрапептиды и пентапептиды. Если таким способом соединить большое число аминокислот, то возникает структура, называемая полипептидом.

    Аминокислотные звенья, входящие в состав пептида, обычно называют остатками (они уже не являются аминокислотами, так как у них не хватает одного атома водорода в каждой аминогруппе и двух атомов – кислорода и водорода – в каждой карбоксильной группе). Таким образом, можно дать следующее определение: пептиды (от греч. peptós — сваренный, переваренный) — это органические вещества, состоящие из остатков аминокислот, соединённых пептидной связью. Количество аминокислот в пептиде может сильно варьировать и в соответствии с их количеством различают:

    • олигопептиды ( молекулы, содержащие до десяти аминокислотных остатков; иногда в их названии упоминается количество входящих в их состав аминокислот, например, дипептид, трипептид, пентапептид и др.);
    • полипептиды ( молекулы, в состав которых входит более десяти аминокислот);
    • белки (соединения, содержащие более 50-90 аминокислотных остатков).

    Однако это деление условно и указанные границы у разных источников могут отличаться.

    Читайте так же:  Л карнитин 750 как принимать

    Понятие белков

    Из выше сказанного следует, что белками являются полипептиды с большим количеством аминокислотных остатков (от 50-90). Дадим другое определение белка.

    Белками называют высокомолекулярные органические соединения (полимеры), молекулы которых построены из остатков аминокислот, число которых очень сильно колеблется и иногда достигает нескольких тысяч.

    Как синоним слова белки часто используют слово протеин (от греч. protas – первый, главный). Каждый белок обладает своей, присущей ему последоватеьностью расположения аминокислотных остатков.

    В организме встречается более ста видов аминокислот. Все они так или иначе участвуют в обменных процессах, но в структуру белка входят всего лишь 20 различных аминокислот; такие аминокислоты еще называют протеиногенными. На рисунке представлены все 20 протеиногенных аминокислот: глицин, аланин, серин, валин, треонин, лейцин, цистеин, изолейцин, метионин, лизин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин, аргинин, пролин, фенилаланин, тирозин, триптофан, гистидин.

    В количественном отношении белки занимают первое место среди всех макромолекул, содержащихся в живом организме; на их долю приходится не менее половины сухого веса клетки. Биологические функции белков крайне разнообразны. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин, глиадин, зеин) и другие функции. Среди белков встречаются антибиотики и вещества, оказывающие токсическое действие.

    Белки – важнейшая составная часть пищи человека и животных. Когда белок поступает в организм с пищей, то не усваивается непосредственно, а расщепляется под воздействием пищеварительных ферментов до аминокислот, из которых организм строит нужные белки.

    В связи с этим встает ряд вопросов, которые уже выходят за рамки данной статьи, но обязательно будут рассмотрены вскоре. Мы лишь перечислим их: о важности наличия полного набора из 20 аминокислот, о полноценности белков, о заменимых и незаменимых аминокислотах, как строительном материале белка, о процессах биосинтеза белка, о нарушениях в усвоении белка, о продуктах, богатых на белок.

    Белки и аминокислоты (стр. 3 из 4)

    В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «насто­ящий» болезнетворный микроб тот­час же подвергнется атаке этих анти­тел, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекци­онным болезням.

    ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО

    В природе существуют белки, в ко­торых помимо аминокислот содер­жатся другие химические компонен­ты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполне­нии белком его биологической функ­ции. Так, перенос молекул и ионов из одного органа в другой осуществля­ют транспортные белки плазмы крови. Белок гемоглобин (от греч. «гема» — «кровь» и лат. globus — «шар», «шарик»), содержащийся в кровяных клетках — эритроцитах (от греч. «эритрос» — «красный» и «китос» — «клетка»), доставляет кис­лород от лёгких к тканям. В молеку­ле гемоглобина есть комплекс иона железа Fe 24 » со сложной органической молекулой, называемый гемам. Гемо­глобин состоит из четырёх белковых субъединиц, и каждая из них содер­жит по одному гему.

    В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединя­ется кислород, сам ион тут же чуть-чуть меняет своё расположение в мо­лекуле белка. Движение железа «про­воцирует» движение всей аминокис­лотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру. Другая субъеди­ница, ещё не присоединившая кислород, «чувствует», что произошло с со­седкой. Её структура тоже начинает меняться. В итоге вторая субъедини­ца связывает кислород легче, чем пер­вая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудно­стями. Как видно, субъединицы помо­гают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в про­сторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку ли­шает гемоглобин возможности при­соединять кислород.

    . Служат питательными веществами. В семенах многих растений (пшени­цы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся так­же альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных свя­зей. Белки «разбираются» на отдель­ные аминокислоты, из которых орга­низм в дальнейшем «строит» новые пептиды или использует для полу­чения энергии. Отсюда и название:

    греческое слово «пептос» означает «переваренный». Интересно, что гид­ролизом пептидной связи управляют тоже белки — ферменты.

    . Участвуют в регуляции клеточ­ной и физиологической активности. К подобным белкам относятся мно­гие гормоны (от греч. «гормао» — «по­буждаю»), такие, как инсулин, регули­рующий обмен глюкозы, и гормон роста.

    . Наделяют организм способно­стью изменять форму и передвигать­ся. За это отвечают белки актин и ми­озин, из которых построены мышцы.

    . Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чис­тый белок коллаген, а волосы, ногти и перья состоят из прочного нерас­творимого белка кератина.

    ЧТО ЗАПИСАНО В ГЕНАХ

    Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной инфор­мации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположе­ния аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание на­следственной информации. Следо­вательно, и выполняемые белками функции запрограммированы гене­тически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, кото­рое передаётся в природе от поколе­ния к поколению.

    Интерес человека к этим органи­ческим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пыта­ются определить взаимосвязь функ­ций со структурой. Установление сходства и различий у белков, выпол­няющих аналогичные функции у раз­ных живых организмов, позволяет глубже проникать в тайны эволюции.

    Читайте так же:  Из скольких нуклеотидов состоит аминокислота

    АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА

    D- и L-формы аминокислот обладают способностью очень медленно превращаться друг в друга. За определённый (весьма длительный) период времени чистая D- или I-форма может стать смесью равных количеств обеих форм. Такая смесь называется раиемагом, а сам процесс —раие-мизаиией. Скорость рацемизации зависит от температуры и типа амино­кислоты. Данное свойство можно использовать для определения возрас­та ископаемых остатков организмов, а при необходимости — и живых существ. Например, в белке дентина (дентин — костная ткань зубов) 1-ас-парагиновая кислота самопроизвольно раиемизуется со скоростью 0,1 % в год. У детей в период формирования зубов в дентине содержится толь­ко 1-аспарагиновая кислота. Дентин выделяют из зуба и определяют В нём содержание 0-формы. Результаты теста достаточно точны. Так, для 97-лет­ней женщины, возраст которой был документально засвидетельствован, тест показал возраст 99 лет. Данные исследований, выполненных на ис­копаемых остатках доисторических животных — слонов, дельфинов, мед­ведей, — хорошо согласуются с результатами датирования, полученными радионуклидным методом.

    [3]

    ЗА ЧТО СЕНГЕР ПОЛУЧИЛ НОБЕЛЕВСКИЕ ПРЕМИИ

    При гидролизе белков до аминокислот (разрушении пептидной связи во­дой) теряется информация о последовательности их соединения. Поэто­му долгое время считали, что определение первичной структуры белка представляет собой совершенно безнадежную задачу. Но в 50-х гг. XX в. английский биохимик Фредерик Сенгер (родился в 1918 г.) смог расшиф­ровать последовательность аминокислот в полипептидных цепях гормо­на инсулина. За эту работу, на выполнение которой ушло несколько лет, в 1958 г. Сенгер был удостоен Нобелевской премии по химии (двадца­тью годами позже он совместно с У. Гилбертом получил вторую премию за вклад в установление первичной структуры ДНК).

    Принципы определения аминокислотной последовательности, впервые сформулированные Сенгером, используются и ныне, правда, со всевоз­можными вариациями и усовершенствованиями. Процедура установле­ния первичной структуры белка сложна и многоступенчата: в ней около десятка различных стадий. Сначала белок расщепляют до отдельных ами­нокислот и устанавливают их тип и количество в данном веществе. На сле­дующей стадии длинную белковую молекулу расщепляют уже не полно­стью, а на фрагменты. Затем в этих фрагментах определяют порядок соединения аминокислот, последовательно отделяя их одну за другой. Расшепление белка на фрагменты проводят несколькими способами, что­бы в разных фрагментах были перекрывающиеся участки. Выяснив поря­док расположения аминокислот во всех фрагментах, получают полную ин­формацию о том, как аминокислоты расположены в белке. К концу XX в. созданы специальные приборы, определяющие последовательность амино­кислот в молекуле белка в автоматическом режиме — секвенаторы (от англ. sequence — «последовательность»).

    И КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ

    Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.

    В коровьем молоке обычно содержится от 3 до 6 % жиров (в основном это сложные эфиры глицерина и насыщенных карбоновых кислот — пальмитиновой, стеариновой), около 3 % белков, а ешё углеводы, органические кислоты, витамины и минеральные вещества.

    Белок казеин в молоке присутствует в связанном виде — ковалентно присоединённые к аминокислоте сери-ну фосфатные группы образуют соли с ионами кальция. При подкислении молока эти соли разрушаются, и казеин выделяется в виде белой творожистой массы. В желудке человека под действием особых ферментов происходит процесс, называемый “створажива-нием казеина”. Створоженный казеин выпадает в осадок и медленнее выводится из организма, а потому полнее усваивается. Казеин высоко питателен:

    в нём есть почти все аминокислоты, необходимые человеку для построения собственных белков. В чистом виде он представляет собой безвкусный белый порошок, не растворимый в воде. Помимо него в молоке содержатся и другие белки, например лактальбумин. При кипячении этот белок превращается в нерастворимую форму, образуя на поверхности кипячёного молока характерную белую плёнку — пенку.

    Входящий в состав молока сахар лактоза С^НддО,, изомерен сахарозе. В организме человека под действием фермента лактазы этот сахар расщепляется на моносахариды глюкозу и галактозу, которые легко усваиваются. За счёт этого, например, грудные дети пополняют запасы углеводов. Интересно, что у многих людей (в основном у представителей монголоидной расы) организм в зрелом возрасте утрачивает способность расщеплять лактозу.

    Видео удалено.
    Видео (кликните для воспроизведения).

    Проходя через пищеварительный тракт, лактоза не усваивается, а становится питательной средой для развития различных болезнетворных микроорганизмов, что приводит к общему недомоганию. Именно поэтому народы Дальнего Востока (японцы, китайцы) практически не употребляют в пишу молочные продукты.

    В промышленных условиях молоко подвергают тепловой обработке, цель которой — подавить развитие микроорганизмов и продлить срок его хранения. Для этого молоко пастеризуют — выдерживают 30 мин при 65 °С, а также используют кратковременную термообработку — нагревают в течение 10-20 с до 71 °С. По сравнению с пастеризацией термообработка лучше сохраняет питательные вещества, в первую очередь витамины. Чтобы молоко не расслаивалось на сливки и сыворотку, его гомогенизируют — пропускают под давлением через небольшие отверстия. Жировые шарики дробятся, уменьшаются в размерах, а молоко становится более вязким.

    Источники


    1. Васичкин, Владимир Большая книга массажа и гимнастики для детей. От рождения до 3 лет / Владимир Васичкин , Ирина Тихомирова. — М.: Питер, 2011. — 192 c.

    2. Волошина, И. А. Артикуляционная гимнастика для девочек / И.А. Волошина. — М.: Детство-Пресс, 2011. — 767 c.

    3. Гимнастика. Спортивные термины на 5 языках / ред. В.И. Калогномос. — М.: Русский язык, 1979. — 272 c.
    Белок из трех аминокислот
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here