Биосинтез аминокислот в клетках

Сегодня предлагаем ознакомится со статьей на тему: биосинтез аминокислот в клетках с профессиональным описанием и объяснением.

Заменимые и незаменимые аминокислоты. Биосинтез заменимых аминокислот с использованием глюкозы

Читайте также:

  1. E) аминокислоты.
  2. Алгоритм поиска неисправностей с использованием оптимизации на графах
  3. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ
  4. Аминокислоты могут давать энергию
  5. Аудиторская выборка. Риски, связанные с использованием аудиторской выборки ( см. ст. 16)
  6. Белковые факторы, необходимые для биосинтеза ДНК.
  7. Биологическая роль и биосинтез углеводов
  8. Биосинтез белка
  9. Биосинтез гемоглобина
  10. БИОСИНТЕЗ РНК
  11. Биосинтез холестерола
  12. Вопрос 2.13. Биосинтез белка, этапы. Особенности транскрипции: инициация, элонгация, терминация.

Образование и обезвреживание аммиака в организме.

+O2

Свободный аммиак образуется в организме в результате окислительного дезаминирования биогенных аминов:

Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины.

Суммарная реакция синтеза мочевины:

Одним из путей связывания и обезвреживания аммиака в организме является биосинтез глутамина. Глутамин выполняет транспортную функцию переноса аммиака в нетоксичной форме.

Часть аммиака легко связывается с α-кетоглутаровой кислотой благодаря обратимости глутаматдегидрогеназной реакции. Аммиак связывается при синтезе глутамина:

Заменимые аминокислоты синтезируются в организме человека. К ним относятся глицин, аланин, глутаминовая кислота, серин и др. Незаменимые аминокислоты не синтезируются в организме человека, поступают с пищей. К ним относятся валин, лизин, фенилаланин и др.

Дата добавления: 2015-03-29 ; Просмотров: 2387 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Биосинтез аминокислот

Большинство прокариот способны синтезировать все аминокислоты, входящие в состав их клеточных белков. Биосинтез аминокислот является примером связи процессов анаболизма и катаболизма. Предшественниками для синтеза аминокислот служат промежуточные продукты метаболизма, такие, как альфа-кетоглутаровая, щавелевоуксусная пировиноградная, 3-фосфоглицериновая кислоты и другие соединения. Источником азота обычно является аммиак или нитраты, нитриты, молекулярный азот.

Биосинтез аминокислот происходит различными путями. Наиболее простой путь – прямое аминирование кетокислот аммиаком. Так, альфа-кетоглутаровая кислота, взаимодействуя с аммиаком при участии фермента глутаматдегидрогеназы, образует глутаминовую кислоту:

НООС-(СН2)-СО-СООН +NН3 +НАД(Ф)Н2глутаматдегидрогеназа НООС-(СН2)2─CHNH2─COOH+НАД(Ф) + +H2O

Глутаминовая кислота служит донором аминогрупп при биосинтезе многих аминокислот и других азотсодержащих органических соединений. Подобным образом идет биосинтез аланина и аспарагиновой кислот.

В клетках гетеротрофных прокариот биосинтез аминокислот происходит в основном путем переаминирования аминокислот, поступающих из среды при участии ферментов аминотрансфераз.

НООС-(СН2)2— СНNН2-СООН + НООС-СН2-СО-СООН

Синтезируемые внутриклеточно аминокислоты полимеризуются в жизненно важные молекулы белков. Некоторые гетеротрофные прокариоты, например такие, как лактобациллы, не способны синтезировать все аминокислоты, поэтому их рост возможен только на сложных обогащенных питательных средах.

Биосинтез нуклеотидов.Нуклеотиды являются исходным материалом для биосинтеза нуклеиновых кислот и многих ко-ферментов. По химической природе нуклеотиды – сложные соединения, состоящие из азотистых оснований – производных пурина или пиримидина, углеводов типа пентоз и фосфорной кислоты. Однако, несмотря на сложность химической природы, большинство прокариот способны синтезировать нуклеотиды, используя низкомолекулярные предшественники.

Основным звеном биосинтеза нуклеотидов считается синтез пуриновых и пиримидиновых азотистых оснований. Начальной стадией синтеза пуриновых нуклеотидов является взаимодействие 5-фосфорибозил-1-пирофосфата с глутамином с образованием фосфорибозиламина. Затем в реакцию включаются другие соединения – предшественники – и ряд последовательных ферментативных реакций завершается образованием инозиновой кислоты – пуринового нуклеотида. Она служит исходным продуктом для синтеза других нуклеотидов – адениловой и гуаниловой кислот, необходимых для синтеза РНК.

Первым пиримидиновым нуклеотидом, синтезируемым из низкомолекулярных соединений, является оротидиловая кислота, которая декарбоксилируется с образованием уридиловой кислоты. Из последней путем аминирования образуется цитидиловая кислота-нуклеотид, содержащий цитозин, и путем ферментативного метилирования – тимидиловая кислота-нуклеотид, содержащий тимин.

Многие прокариоты способны утилизировать содержащиеся в среде пуриновые и пиримидиновые основания и их нуклеозиды и нуклеотиды. Вновь синтезированные клеткой или усвоенные из среды нуклеотиды при участии РНК- и ДНК-полимераз полимеризуются в полинуклеотиды – молекулы РНК и ДНК.

Дата добавления: 2014-11-06 ; Просмотров: 357 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

БИОСИНТЕЗА АМИНОКИСЛОТ

ТЕХНОЛОГИЯ

1.Аминокислоты, способы получения.

2. Биосинтез аминокислот клетками микроорганизмов.

3. Пути биосинтеза и методы селекции продуцентов отдельных аминокислот.

Производству аминокислот после кормового белка уделяется наибольшее внимание. Это обусловлено высокой питательной ценностью получаемых на их основе кормов и отдельных продуктов питания. Недостаток в рационе (дефицит) отдельных аминокислот, особенно незаменимых, которые не синтезируются в достаточном количестве и с необходимой скоростью в организме животного или человека, отрицательно сказывается на росте и развитии, может привести к различного рода заболеваниям. (К незаменимым аминокислотам относятся валин, аргинин, гистидин, лизин, лейцин, изолейцин, метионин, треонин, триптофан, фенилаланин.).

способы получения аминокислот:

3. производство аминокислот из белковых гидролизатов

В результате химического синтеза всегда образуются рацематы — равновесные смеси L- и D-форм аминокислоты, требующие в дальнейшем достаточно сложной и (или) дорогостоящей очистки, присутствие D-формы в готовом продукте всегда нежелательно не только потому, что она представляет собой балласт, поскольку не усваивается организмом человека и животного, но у некоторых аминокислот она обладает токсичными свойствами.

Читайте так же:  Л карнитин как принимать перед тренировкой

Производство аминокислот методом органического синтеза предполагает осуществление большого количества технологических операций. Технология такого производства в большинстве случаев направлена на использование достаточно токсичных соединений, высокоочищенных реагентов и осуществление стадии разделения образующихся рацематов.

Производство аминокислот из белковых гидролизатов.

Другим возможным способом получения аминокислот является гидролиз (кислотный, щелочной, ферментативный) некоторых наиболее доступных природных белков. К их числу относят отходы мясной промышленности, казеин молока, клейковину пшеницы и др. Однако такой способ имеет ряд существенных недостатков, которые не позволяют использовать его для организации крупнотоннажного промышленного производства. Наиболее существенные из них — это ограниченность и нестандартность источников сырья, многоступенчатая химическая обработка, связанная с выделением аминокислот и их очисткой. Кроме того, гидролиз под действием минеральных агентов приводит к частичному разрушению таких ценных аминокислот, как триптофан, треонин, цистеин, серин, а применение существующих протеолитических ферментов не обеспечивает полноты гидролиза всех пептидных связей.

Производство L-аминокислот микробиологическим синтезом.

Из всex возможных способов получения аминокислот микробиологическому синтезу в настоящее время отдается явное предпочтение.

Его очевидное преимущество состоит в том, что используемые микроорганизмы образуют аминокислоты в биологически активной L-форме. Последнее обеспечивает их выделение и очистку, выпуск технических препаратов для обогащения кормов с доступной для животноводства ценой.

Организацию промышленного производства L-аминокислот с помощью микроорганизмов возможно осуществить по двум технологическим схемам. Они различаются, в основном, стадией получения культуральной жидкости. В первой предполагается производство культуральной жидкости в две ступени (двухступенчатый способ), во второй — в одну ступень (одноступенчатый способ).

Одноступенчатый способ синтеза аминокислот с помощью микроорганизмов получил наибольшее распространение. Он основан на культивировании строго определенного штамма — продуцента целевой аминокислоты на среде заданного состава при соответствующих параметрах процесса ферментации.

Используемый штамм обладает способностью к сверхсинтезу необходимой аминокислоты. Для этой цели, как правило, выбирают полиауксотрофные мутанты, т. е. те клетки микроорганизма, которые, с одной стороны, утратили способность самостоятельно синтезировать необходимые для роста и развития различные аминокислоты, а с другой — приобрели способность к сверхсинтезу целевой аминокислоты.

Матричные биосинтезы (трансляция). Генетический код. Регуляция биосинтеза белка

Тема: «МАТРИЧНЫЕ БИОСИНТЕЗЫ (ТРАНСЛЯЦИЯ). ГЕНЕТИЧЕСКИЙ КОД. БИОСИНТЕЗ БЕЛКА И ЕГО РЕГУЛЯЦИЯ»

1. Основные компоненты белоксинтезирующей системы. Функции рибосом. Адапторная функция тРНК. Генетический код и его свойства.

2. Биосинтез белка (трансляция). Последовательность этапов синтеза полипептидной цепи, необходимые условия. Посттрансляционные модификации белковых молекул .

3. Регуляция биосинтеза белка. Представление об опероне. Индукция и репрессия синтеза белка в организме человека. Ингибиторы матричных биосинтезов.

4. Мутации. Молекулярные механизмы. Биологические последствия (эволюционная изменчивость, полиморфизм белков, наследственные болезни).

Раздел 5.1

Генетический код. Адапторная функция мРНК. Активация аминокислот.

5.1.1. Трансляция (от англ. translation – перевод) – перевод генетической информации, заключённой в мРНК, в линейную последовательность аминокислот в полипептидной цепи. Этот перевод осуществляется посредством генетического (биологического) кода.

5.1.2. Генетический код – последовательность нуклеотидов, соответствующая определённым аминокислотам. Генетический код характеризуется свойствами:

  • код триплетный – каждой аминокислоте соответствует тройка (триплет) нуклеотидов – кодон. Всего существует 4 3 = 64 кодона. Из них 61 является смысловым (то есть кодирует определённую аминокислоту) и 3 – бессмысленными (терминирующими);
  • код неперекрывающийся – один и тот же нуклеотид ДНК или РНК не может принадлежать одновременно двум соседним кодонам;
  • код непрерывный – отсутствуют «знаки препинания», вставки между кодонами в полинуклеотидной цепи;
  • код вырожденный (множественный) – некоторые аминокислоты могут кодироваться более, чем одним триплетом нуклеотидов (так как кодонов 61, а аминокислот – 20);
  • код универсальный – смысл кодонов одинаков для организмов всех видов.

5.1.3. Аминокислоты и триплеты нуклеотидов, кодирующие их, не комплементарны друг другу. Поэтому должны существовать молекулы-адапторы, каждая из которых может взаимодействовать как с определённым кодоном, так и с соответствующей аминокислотой. Такими молекулами являются транспортные РНК (рисунок 8.3). Каждая тРНК содержит триплет нуклеотидов – антикодон, который комплементарен строго определённому кодону мРНК.

3’-конец тРНК (акцепторный участок) является местом присоединения аминокислоты, соответствующей кодону мРНК.

Активация аминокислот – подготовительный этап биосинтеза белка – включает связывание их со специфическими тРНК при участии фермента аминоацил-тРНК-синтетазы . Реакция происходит в цитоплазме клеток.

[3]

Раздел 5.2

Стадии трансляции

5.2.1. Собственно процесс трансляции включает 3 стадии – инициации, элонгации, терминации и происходит на рибосомах.

Каждая рибосома состоит из большой и малой субчастиц (40S и 60S) и содержит аминоацильный (А) и пептидильный (П) участки. Пептидильный участок связывает инициирующую аминоацил-тРНК, все остальные аминоацил-тРНК присоединяются к аминоацильному участку.

1) Стадия инициации – начало трансляции. Условия, необходимые для инициации:

  • инициирующий кодон мРНК (АУГ);
  • белковые факторы инициации;
  • малая и большая субчастицы рибосомы;
  • ГТФ (источник энергии для смыкания субчастиц рибосомы);
  • ионы магния;
  • инициирующая аминоацил-тРНК (метионил-тРНК) – связывается своим антикодоном с инициирующим кодоном мРНК в пептидильном участке рибосомы.

В результате образуется инициирующий комплекс: мРНК – рибосома – метионил-тРНК (рисунок 5.3, а).

Читайте так же:  Сделать изотоник своими руками

2) Стадия элонгации – удлинение полипептидной цепи на 1 аминокислотный остаток – происходит в три шага:

  • присоединение к инициирующему комплексу аминоацил-тРНК, соответствующей кодону, находящемуся в аминоацильном участке рибосомы (рисунок 5.3, б);
  • транспептидация – образование пептидной связи между остатками аминокислот (рисунок 5.3, в). Источник энергии – ГТФ;
  • транслокация – перемещение рибосомы относительно мРНК на 1 триплет (рисунок 5.3, г). Источник энергии – ГТФ. В ходе элонгации принимают участие белковые факторы.

Описанный процесс многократно повторяется (по количеству аминокислот в цепи).

3) Стадия терминации – окончание трансляции. Обеспечивается присутствием в цепи мРНК одного из терминирующих (бессмысленных) кодонов – УАА, УГА или УАГ. В освобождении полипептида участвуют белковые факторы терминации (рисунок 5.3, д). Когда в аминоацильном участке оказывается один из бессмысленных кодонов, факторы терминации стимулируют гидролазную активность пептидилтрансферазы. Благодаря этому гидролизуется связь между тРНК и пептидом. ГТФ для этой реакции не требуется. После этого пептидная цепь, тРНК и мРНК покидают рибосому, а её субчастицы диссоциируют.

Таким образом, трансляция мРНК приводит к формированию пептидной цепи со строго определённой последовательностью аминокислотных остатков. Следующий этап формирования белка –фолдинг, т.е. сворачивание пептидной цепи в правильную трёхмерную структуру. Если белок состоит из нескольких субъединиц, то фолдинг включает и объединение их в единую макромолекулу.

Считается, что небольшие белковые молекулы, содержащие около 100 аминоацильных остатков, могут самостоятельно принимать трёхмерную структуру, фолдинг более крупных полипептидных цепей требует участия специальных белков – шаперонов.

Видео (кликните для воспроизведения).

Шапероны называют иначе белками теплового шока, так как они не только обеспечивают правильный фолдинг вновь образованных белков, но и ренатурацию ранее синтезированных белков, подвергшихся в клетке частичной денатурации под действием различных факторов (перегрев, облучение, действие своблодных радикалов и т.д.).

5.2.2. Посттрансляционные модификации

белковой молекулы могут включать:

  • частичный протеолиз (например, превращение профермента в фермент);
  • присоединение простетической группы (остатков фосфорной кислоты, углеводных остатков, гемовых групп и т.д.);
  • модификации боковых цепей аминокислотных остатков:
    • гидроксилирование пролина в гидроксипролин в коллагене,
    • метилирование аргинина в гистоне,
    • йодирование тирозина в тироглобулине).

5.2.3. Действие токсических и лекарственных веществ на биосинтез белка. Биосинтез белка является одним из наиболее сложных процессов, протекающих в клетках. Его прерывание или извращение возможно в результате нарушения любого из трёх матричных синтезов.
Так, мутагены (бенз(а)пирен, линдан) нарушают репликацию ДНК и таким образом прерывают белоксинтезирующие процессы.
Некоторые токсические вещества (госсипол) могут изменять скорость транскрипции.
К лекарственным веществам, влияющим на биосинтез белка, относятся антибиотики и интерфероны.
Антибиотики, блокирующие матричные биосинтезы, используются в лечении инфекционных заболеваний и злокачественных опухолей. (см. таблицу 5.1).

Антибиотики, ингибирующие матричные биосинтезы

Антибиотики Механизм действия
Противоопухолевые препараты: актиномицин Д, рубомицин С, митомицин С
Видео (кликните для воспроизведения).

Подавляют репликацию или транскрипцию, или оба эти процесса

Противобактериальные препараты: тетрациклин, левомицетин, эритромицин, стрептомицин Ингибируют трансляцию в бактериальных (но не эукариотических) клетках

Регуляция синтеза белка

5.3.1. Оперон (транскриптон) — совокупность генов, способных включаться и выключаться в зависимости от метаболических потребностей клетки. В состав оперона наряду соструктурными генами (СГ), кодирующими структуру определённых белков, входят участки ДНК, выполняющие регуляторные функции (рисунок 5.4). Группа структурных генов, отвечающих за синтез ферментов одного метаболического пути, находится под контролем гена-оператора (ГО), расположенного рядом. Функция гена-оператора контролируется пространственно удалённым от него геном-регулятором (ГР), который продуцирует белок-репрессор, находящийся в активной либо в неактивной форме. Активный белок-репрессор способен связываться с геном-оператором и тормозить транскрипцию структурных генов, следовательно, подавлять синтез белков. Вещества, вызывающие инактивацию белка-репрессора, являются индукторамисинтеза белка, оказывающие противоположный эффект – корепрессорами. В качестве индукторов могут выступать исходные субстраты метаболических путей, в качестве корепрессоров — конечные продукты этих путей.

5.3.2. Существуют два механизма регуляции синтеза белка – индукция и репрессия. Примером оперона, который регулируется по механизму индукции, является лактозный оперон, в состав которого наряду с геном-оператором входят 3 структурных гена, кодирующие ферменты катаболизма лактозы (см. рисунок 5.4). Лактоза является индуктором данного оперона. При высокой концентрации лактозы в среде ферменты синтезируются, при низкой концентрации – нет.

5.3.3. По механизму репрессии регулируется гистидиновый оперон, содержащий ген-оператор и 10 структурных генов, кодирующих ферменты, необходимые для биосинтеза гистидина (см. рисунок 5.5). Гистидин является корепрессором данного оперона. При высокой концентрации гистидина в среде синтез ферментов прекращается, при отсутствии гистидина они синтезируются.

Биосинтез аминокислот в клетках

186-187

В атмосфере элементарный азот (Ν 2 ) присутствует практически в неограниченном количестве. Прежде чем поступить в круговорот азота, он должен быть восстановлен до NH 3 и включен («фиксирован») в аминокислоты.

А. Симбиотическая фиксация азота

Фиксировать атмосферный азот способны лишь немногие виды бактерий и синезеленых водорослей. Они находятся в почве свободно или живут в симбиозе с растениями. Особо важное хозяйственное значение имеет симбиоз между бактериями рода Rhizo bium и бобовыми растениями (Fabales), такими, как клевер, бобы или горох. Эти растения очень питательны благодаря высокому содержанию белка.

В симбиозе с бобовыми бактерии живут в корневых клубочках внутри растительных клеток, так называемые бактероидах . С одной стороны, растение снабжает бактериоды питательными веществами, а с другой, извлекает пользу от фиксированного азота, который поставляет симбионт. Фиксирующим N 2 ферментом бактерий является нитрогеназа. Она состоит из двух компонентов: Fe-белка и FeMo-белка. Fe-белок, содержащий [FeS 4 ]-центр (см. с. 144), служит окислительно-восстановительной системой, которая принимает электроны от ферредоксина и передает их во второй компонент, FeMo-белок. Этот молибденсодержащий белок переносит электроны на N 2 и таким образом через различные промежуточные стадии продуцирует NH 3 . Часть восстановительных эквивалентов переносится в побочной реакции на H + . Поэтому наряду с NH 3 всегда образуется водород.

Б. Биосинтез аминокислот: общие сведения

По особенностям биосинтеза протеиногенные аминокислоты (см. с. 66) подразделяются на пять семейств. Члены каждого семейства имеют общих предшественников, которые образуются в цитратном цикле или при катаболизме углеводов. Пути биосинтеза здесь приведены схематически, более подробно они рассматриваются на сс. 400 и 401.

В то время как растения и микроорганизмы могут вполне синтезировать все аминокислоты, млекопитающие в ходе эволюции утратили способность к синтезу примерно половины из 20 протеиногенных аминокислот. Поэтому незаменимые аминокислоты должны поступать с пищей. Так, организм высших организмов не способен синтезировать ароматические аминокислоты de novo (тирозин не является незаменимой аминокислотой только потому, что может образоваться из фенилаланина). К незаменимым аминокислотам принадлежат аминокислоты с разветвленной боковой цепью: валин и изолейцин, а также лейцин, треонин, метионин и лизин. Гистидин и аргинин являются незаменимыми для крыс, но касается ли это также человека — спорно. Наличие незаменимых аминокислот в рационе питания, по-видимому, существенно по крайней мере во время роста организма. Питательная ценность белков (см. с. 348) решающим образом зависит от содержания незаменимых аминокислот. Растительные белки зачастую бедны лизином или метионином. В то же время животных белки содержат все аминокислоты в сбалансированных соотношениях.

Заменимые аминокислоты (аланин, аспарагиновая и глутаминовая кислоты и их амиды, аспарагин и глутамин) образуются в результате трансаминирования из промежуточных метаболитов — 2-кетокислот. Пролин синтезируется в достаточных количествах из глутамата, а представители серинового семейства (серин, глицин и цистеин) сами являются естественными метаболитами организма животных.

Биосинтез белка и его регуляция

Раздел 5.3
Читайте также:
  1. Биосинтез аминокислот.
  2. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства
  3. Биосинтез белка: стадии элонгации и терминации трансляции.
  4. Биосинтез витамина В12
  5. Биосинтез глицерола, жирных кислот, ацилглицеролов, фосфоглицеридов и холестерола. Патология липидного обмена.
  6. Биосинтез ДНК
  7. Биосинтез пиримидиновых мононуклеотидов
  8. Биосинтез РНК
  9. Вожделение — следствие употребления животного белка
  10. Нарушение конечного этапа обмена белка и аминокислот
  11. Нарушение процессов эндогенного синтеза и распада белка

Осуществляется во всех клетках про — и эукариотических организмов, это неотъем-лемое св-во живого. Информация о первичной структуре белковой молекулы, от которой зависят все остальные структуры и св-ва, за-кодирована последовательностью нуклеотидов в соответствующем участке молекулы ДНК – гене. Информация о структуре молекуле белка находится в ядре, а его сборка идёт в цитоплазме (в рибосомах), в клетке имеется посредник, копирующий и передающий эту информацию. Таким посредником является и-РНК.

Этапы биосинтеза белка. Весь белковый синтез, или процесс трансляции, может быть условно разделён на два этапа: активирование аминокислот и собственный процесс трансляции.

Активирование аминокислот. Необходимым условием синтеза белка, который, в конечном счете, сводится к поли-меризации аминокислот, является наличие в системе не свободных, а так называемых ак-тивированных аминокислот, располагающих своим внутренним запасом энергии. Активация свободных аминокислот осуществляется при помощи специфических ферментов аминоацил-тРНК-синтетаз в присутствии АТФ. Этот процесс протекает в две стадии. Обе стадии катализируются одним и тем же ферментом. В первой стадии аминокислота реагирует с АТФ, и образуется промежуточный продукт, который реагирует с соответствующей 3′-ОН-т-РНК, в результате чего образуется аминоацил-тРНК и освобождаются пиро-фосфат и АМФ. Аминоацил-тРНК располагает необходимым запасом энергии. Аминокислота присоединяется к концевому З’-ОН-гидроксилу адениловой кислоты, которая вместе с двумя остатками цитидиловой кисло-ты образует концевой триплет (ЦЦА), являю-щийся одинаковым для всех транспортных РНК 1.

Вторую стадию матричного синтеза белка — трансляцию, протекающую в рибосоме, условно делят на три стадии: инициацию, элонгацию и терминацию.

Инициация трансляции.Стадия инициации, являющаяся «точ-кой отсчета» синтеза белка, требует соблюде-ния ряда условий, в частности наличия в сис-теме, помимо 70S или 80S рибосом, инициаторной амино-ацил-тРНК, инициирующих кодонов в составе м-РНК и белковых фак-торов инициации. Таким образом, N-формил-метионил-тРНК является первой аа-тРНК, которая определяет включение N-концевого остатка аминокислоты и тем самым начало трансляции. Необходимым условием инициации является также наличие инициирующих кодонов, кодирующих формил-метионин. У бактерий эту функцию выполняют триплеты АУГ и ГУГ м-РНК. Однако эти триплеты кодируют формил-метионин (или начальный метионин), только будучи начальными триплетами, при считы-вании матричной м-РНК.

Образование инициаторного комплекса. Имеется много экспериментальных доказательств, что в процессе белкового синтеза наблюдаются постоянная диссоциация 70S рибосомы на 30S и 50S субчастицы и последующая их реассоциация. Сначала образуется инициаторный комплекс путем присоединения белковых факторов, формил-метионил-тРНК и ГТФ к 30S субчастице рибосомы, к которой комплементарно ан-тикодону формил-метионил-тРНК присоединяется м-РНК (с кодоном АУГ).

Особую роль играет формил-метионил-тРНК, которая помогает м-РНК найти на 30S субчастице определенное положение, обеспечивающее трансляцию информации о последовательности аминокислот в полипептидной цепи. Как только м-РНК присоединяется к комплексу, высвобождается белковый фактор IF3; оставшийся комплекс легко присоединяет 50S рибосому, образуя транслирующую, т. е. функционально-активную 70S рибосому. В процессе этих перестроек рибосомы освобождают остальные белковые факторы инициации и продукты гид-ролиза ГТФ (ГДФ в неорганический фосфат), энергия которого расходуется, на конформационные изменения 70S рибосомы, в результате которых формил-метионил-т-РНК из аминоацильного центра перемещается в пептидильный центр рибосомы. У образовавшейся активной рибосомы 70S оказывается свободный аминоацильный центр, который может реагировать с определенной аа-тРНК в строгом соответствии с очередным кодоном м-РНК. С этого момента начинается второй этап синтеза — элонгация.

Элонгация трансляции. Процесс элонгации полипептидной цепи у Е. соli непосредственно, точнее топографиче-ски, связан с большей субчастицей (50S) рибо-сомы, содержащей два центра для связывания т-РНК: один из них называется амоноациль-ным, другой — пептидильным центром.

В процессе элонгации у Е. соli также участвуют три белковых фактора, обозначае-мых EF-Tu, EF-Ts и EF-G (т. е. элонгационные факторы трансляции U, S и G), а у эукариот известно два таких фактора, названных трансляционными факторами: TF-1 и TF-2. Процесс элонгации требует также наличия ГТФ, энергия гидролиза которого необходима для сближения аа-тРНК, расположенной на аминоацильном центре, и формил-метионил-тРНК, локализованной на пептидильном центре. Элонгация начинается со связывания аа-тРНК (аминокислотный остаток которого является вторым с N-конца после формил-метионина) с белковыми факторами и присоединения всего комплекса к аминоациль-ному центру в соответствии с кодовым трипле-том на м-РНК. Далее в пептидильном центре осуществляется ферментативная реакция транспептидирования между формил-метионил-тРНК и аа-тРНК; в процессе этой реакции остаток формил-метионина переносится на свободную NH2-группу аа-тРНК, и замыкается первая пептидная связь в будущей полипептидной цепи; параллельно освобождается т-РНКфмет. Фермент, катализирующий эту реакцию, получил назва-ние пептидил-трансферазы. Достигается транс-локация благодаря миграции рибосомы относительно м-РНК при участии фермента «транслоказы», фактора элонгации, а также энергии распада ГТФ.

Таким образом, в стадии элонгации происходит последовательное наращивание полипептидной цепи по одной аминокислоте в строгом соответствии с порядком триплетов (кодонов) в молекуле м-РНК.

Терминация процесса трансляции.Завершение синтеза полипептидной цепи в 70S рибосоме осуществляется при уча-стии трех белковых факторов реализации: RF-1, RF-2 и RF-3 у Е. соli. В клетках животных открыт единственный белок с аналогичным свойством — фактор R. После того как терминирующий кодон м-РНК займет свое место в аминоацильном центре рибосомы, к нему присоединяется один из белковых факторов терминации и блокируется дальней-шая элонгация цепи.

Терминирующие кодоны и белковые факторы индуцируют пептидилэстеразную активность одного или двух рибосомных белков 50S субчастицы, причем разрывается сложноэфирная связь между синтезированным полипептидом и т-РНК. Следствием этого являются отделение белковой молекулы от рибосомы, освобождение т-РНК и м-РНК (по-следняя подвергается распаду до свободных рибонуклеотидов); одновременно 70S рибо-сома распадается на две свои субчастицы 30S и 50S, которые поступают в свободный пул и могут вновь использоваться для реассоциации рибосомы. Синтезированная полипептидная цепь далее подвергается деформилированию при участии специфического фермента — пептидил-деформилазы. Возможно, что от полипептида отщепляется также концевой метионин. В клетках животных открыт фер-мент аминопептидаза, катализирующая отщеп-ление N-концевого метионина.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)

Тема 19 «Конструктивный метаболизм»

1. Общая характеристика конструктивного метаболизма.

2. Биосинтез аминокислот: основные предшественники и пути биосинтеза.

3. Биосинтез нуклеотидов.

4. Биосинтез липидов, жирных кислот и фосфолипидов.

5. Биосинтез углеводов.

[2]

1. Общая характеристика конструктивного метаболизма

Конструктивный метаболизм (биосинтезы) — поток реакций, в результате которых за счет поступающих извне веществ строится вещество клеток; это процесс связан с потреблением свободной энергии, запасенной в химической форме в молекулах АТФ или других богатых энергией соединений.

Установлено, что у бактерий E. coli, растущих в аэробных условиях на среде с глюкозой, около 50 % глюкозы окисляется до СО2. При этом образуются молекулы АТФ, в которых аккумулируется энергия. Остальные 50 % глюкозы используются для построения клеточного материала. На подобные процессы затрачивается бóльшая часть энергии АТФ, образовавшейся в результате аэробного окисления.

Более 95 % клеточного материала бактерий E. coli и других микроорганизмов состоит из макромолекул или полимеров: белков, полисахаридов, липидов, РНК, ДНК. На долю белков приходится 52 %, а на долю нуклеиновых кислот – 19 % массы сухого вещества. Около 3 % сухого вещества клеток составляют низкомолекулярные органические соединения и соли.

Образованию полимеров из глюкозы предшествует синтез составляющих их мономеров: в случае полисахаридов – различных моносахаридов, в случае нуклеиновых кислот – рибо- и дезоксирибонуклеотидов, в случае белков – аминокислот и т. д. (рис. 1).

Мономеры синтезируются из промежуточных метаболитов (амфиболитов), которые образуются при катаболизме глюкозы. Такими промежуточными метаболитами являются: пентозофосфаты, фосфоенолпируват, пируват, ацетил-КоА, щавелевоуксусная и α-кетоглутаровая кислоты. Они являются исходным материалом для синтеза всех необходимых клетке аминокислот, витаминов, сахарофосфатов, жирных кислот, рибо- и дезоксирибонуклеотидов, которые образуются в реакции полимеризации.

Рис. 1. Общая схема путей биосинтеза клеточного материала из глюкозы

2. Биосинтез аминокислот: основные предшественники и пути биосинтеза.

Большинство бактерий способно синтезировать все аминокислоты, входящие в состав клеточных белков. Предшественниками для синтеза аминокислот служат промежуточные продукты метаболизма, такие кислоты, как: α-кетоглутаровая, щавелевоуксусная, пировиноградная, 3-фосфоглицериновая и другие соединения.

Особенностью биосинтеза аминокислот является использование общих биосинтетических путей. Входящие в состав белков 20 аминокислот, в зависимости от исходных метаболитов, для их синтеза можно сгруппировать в шесть семейств (табл.1).

Предшественники для биосинтеза аминокислот

Метаболический путь, приводящий к образованию предшественника

Основные пути биосинтеза аминокислот

Раздел 2. Тема 11. Обмен аминокислот.

Растения и многие виды бактерий содержат ферментные системы, необходимые для синтеза всех требуемых α-кетокислот. Животные утратили способность синтезировать некоторые α-кетокислоты, которые соответствуют незаменимым аминокислотам. Другие α-кетокислоты (соответствующие заменимым аминокислотам) могут образовываться в результате метаболизма иных веществ.

1. Синтез заменимых аминокислот.

В организме человека возможен синтез восьми заменимых аминокислот: Ала, Асп, Асн, Сер, Гли, Глу, Глн, Про. Углеродный скелет этих аминокислот образуется из глюкозы, а α-аминогруппа вводится в соответствующие α-кетокислоты в результате реакций трансаминирования. Универсальным доноромα-аминогруппы служит глутамат.Реакцию трансаминирования катализируют ферменты аминотрансферазы (трансаминазы) с участием кофермента пиридоксальфосфата (ПФ, производное витамина В6). Пиридоксальфосфат является обязательным компонентом активного центра трансаминаз и многих других ферментов, для которых субстратами служат аминокислоты.

Путём трансаминирования α-кетокислот, образующихся из глюкозы, синтезируются аминокислоты:

Эти реакции легко обратимы. При этом происходит образование глутамата.

ала + α-кетокислота аланиновая трансаминаза (АЛТ), ПФ ПВК + глу

асп +α-кетокислота аспарагиновая трансаминаза (АСТ), ПФ ЩУК + глу

В сыворотке крови здоровых людей активность этих трансаминаз в тысячи раз ниже, чем в паренхиматозных органах. Поэтому органические поражения при острых и хронических заболеваниях, сопровождающиеся разрушением клеток, приводят к выходу трансаминаз из очага поражения в кровь. Так, уже через 3–5 ч после развития инфаркта миокарда уровень АСТ в сыворотке крови резко повышается (в 20–30 раз). Максимум активности обеих трансаминаз крови приходится на конец первых суток, а уже через 2–3 дня при благоприятном исходе болезни уровень сывороточных трансаминаз возвращается к норме. Напротив, при затяжном процессе или наступлении повторного инфаркта миокарда наблюдается новый пик повышения активности этих ферментов в крови. Этим объясняется тот факт, что в клинике трансаминазный тест используется не только для постановки диагноза, но и для прогноза и проверки эффективности лечения.

При поражениях клеток печени, например, при гепатитах, наблюдается медленное повышение уровня АЛТ в сыворотке. При коронарной недостаточности (стенокардия, пороки сердца и др., кроме инфаркта миокарда) гипертрансаминаземия или не наблюдается, или незначительна. Повышение уровня трансаминаз в сыворотке крови отмечено и при некоторых заболеваниях мышц: при обширных травмах, гангрене конечностей и прогрессивной мышечной дистрофии.

Пара α-кетоглутарат и глутамат широко участвуют в метаболическом потоке азота. Например, с помощью реакций трансаминирования осуществляется «переброска» аминного азота из мышц в печень. В работающей мышце происходит образование аланина из пировиноградной кислоты путем трансаминирования с глутаматом. Аланин поступает в кровь и затем поглощается печенью. В печени происходит обратная реакция, в результате которой образуется пируват, направляемый в глюконеогенез.

Поскольку реакции обратимы, то они играют большую роль как в процессе синтеза аминокислот, так и при их катаболизме. Такие реакции, выполняющие двойную функцию, называют амфиболическими.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8634 —

| 7425 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно


Источники


  1. Кириллов, А. И. Квант-силовая модель души и тела. Гипотеза: моногр. / А.И. Кириллов. — М.: Ленанд, 2008. — 224 c.

  2. Круковер, В.И. 300 советов диетолога / В.И. Круковер. — Москва: Мир, 2004. — 304 c.

  3. Гоникман, Э.И. Даосские лечебные жесты. Терапия самоспасения / Э.И. Гоникман. — М.: Минск: Сантана, 2000. — 197 c.
Читайте так же:  Витамины для мужчин после
Биосинтез аминокислот в клетках
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here