Декарбоксилирование аминокислот образование биогенных аминов

Сегодня предлагаем ознакомится со статьей на тему: декарбоксилирование аминокислот образование биогенных аминов с профессиональным описанием и объяснением.

Биохимические реакции, характерные для аминокислот: декарбоксилирование, дезаминирование и трансаминирование. Боилогическая роль этих реакций, ферменты и коферменты.

Трансаминирование аминокислот – реакция переноса аминогруппы с аминокислоты на α-кетокислоту, в результате чего образуются новая кетокислота и новая аминокислота. Реакции катализируют ферменты аминотрансферазы, коферментом которых служит пиридоксальфосфат – производное витамина В6. вступать в реакции могут все АК, за исключением лизина, треанина и пролина. Во многих реакциях трансаминирования акцепторомаминогрупп является альфа-кетоглутаровая кислота. Т.о. трансаминирование может обеспечить образование тех аминокислот, содержание которых в пище не достаточно за счет имеющихся в избытке, чаще всего это глутамат, аланин, аспартат и соответствующие им кетокислоты.

Дезаминирвоание аминокислот – удаления α-аминогруппы в виде аммиака с образованием безазотистого остатка аминокислоты.

Безазотистый остаток представляет собой α-кетокислоту, которая включается:

— в реакции трансаминирования для синтеза заменимых аминокислот

— в анаплеоротические реакции для восполнения убыли метаболитов ОПК, используемых для синтеза других соединений

— в реакции окисления до СО2 и Н2О

Дезаминированию подвергаются все аминокислоты, кроме лизина.

[1]

Реакции дезаминированияделятся на:

— окислительное (для Глу)

— неокислительное (для Сер, Тре, Гис и Цис)

— непрямое (для остальных аминокислот)

Окислительное дезаминирование глутамата происходит в присутствии кофемента NAD+. Реакция происходит в митохондриях многих тканей, наиболее активно в печени.

Прямому окислительному дезаминированию подвергается только глутамат (фермент глутаматдегидрогеназа):

Прямому неокислительному дезаминированию подвергаются:

— серин и треонин – дезаминирование происходит с отщеплением воды (ферменты сериндегидротаза и треониндегиротаза)

— гистидин дезаминируется внутримолекулярным способом (фермент гистидаза)

— цистеин дезаминируется с выделением H2S и использованием Н2О

Большинство аминокислот подвергается в клетке непрямому дезаминированию, которое включает 2 стадии:

— трансаминирование с α-кетоглутаратом, образование Глу в цитозоле клетки (трансаминаза)

— окислительное дезаминирование Глу в митохондриях (глутаматдегидрогеназа)

Центральную роль в непрямом дезаминирвоании играют глутамат и α-кетогллутарат.пути использования безазотистых остатков: окисление до СО2, синтез заменимых аминокислот, кетоновые тела, глюкоза.

Декарбоксилирование аминокислот – отщепление α-карбоксильной группы. Продуктами реакции являются СО2 и биогенные амины.Декарбоксилированию подвергаются не все аминокислоты, а только тирозин, триптофан, валин, серин, гистидин, глутаминовая кислота, цистеин.

В образовании биогенных аминов участвуют ферменты декарбоксилазы, коферментом которых является пиридоксальфосфат (кроме гистидиндекарбоксилазы).

Биогенные амины являются биологически активными веществами, выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК), регуляторных факторов местного действия (гистамин).

Гистамин образуется путем декарбоксилирования из гистидина в тучных клетках соединительной ткани, образует комплекс с белками и сохраняется в секреторных гранулах, секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ).

— стимулирует секрецию желудочного сока, слюны (пищеварительный гормон)

— вызывает расширение сосудов, покраснение кожи, отечность ткани

— участвует в развитии аллергической реакции

— повышает проницаемость капилляров, вызывает отеки, снижает артериальное давление (но увеличивает внутричерепное, вызывает головную боль)

— сокращает гладкую мускулатуру легких, вызывает удушье

— выполняет роль нейромедиатора

В печени превращение гистидина катализирует фермент гистидаза. Наследственный дефект гистидазы вызывает накопление гистидина в организме и развитие гистидинемии (проявляется задержкой в умственном и физическом развитии детей).

В нервных клетках декарбоксилирование глутамата приводит к образованию ГАМК, которая является основным тормозным медиатором. При инактивации ГАМК трансаминируется и превращается в сукцинат, следовательно, ее обмен связан с ЦТК. ГАМК (в виде препаратов) применяют при нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях и травмах головного мозга.

Биогенный амин ацетилхолин синтезируется в нервной ткани. Предшественником его является серин. Нарушение образования ацетилхолина в синапсах может вызвать миастению – мышечную слабость.

Серотонин – нейромедиатор проводящих путей, образуется в гипоталамусе из аминокислоты триптофана.

[3]

К биогенным аминам относятся и катехоламины (дофамин, норадреналин и адреналин).

Инактивация биогенных аминов происходит путем:

— метилирования с участием SAM под действием метилтрансфераз (гистамина, адреналина, норадреналина):

— окисления ферментом моноаминоксидазами (МАО) с коферментом FAD (дофамина, норадреналина, серотонина, ГАМК). При окислении биогенных аминов происходит дезаминирование и образование альдегида, а затем кислоты, которые выводятся почками:

Декарбоксилирование аминокислот.

Декарбоксилирование — процесс отщепления карбоксильной группы аминокислот в виде СО2. Зачем нам это надо? В результате этих процессов в животных тканях образуются биогенные амины.

[2]

Реакции декарбоксилирования необратимы катализируются ферментами декарбоксилаза. Их простетическая группа — пиридоксальфосфат.
Механизм реакции напоминают РЕАКЦИЮ трансаминирования с участием пиридоксальфостфат и также осущестляется путем образования шиффова основания ПФ и аминокислоты.

Биогенные амины, происхождение, функции.

Что такое биогенные амины? Это амины, образовавшиевся при декарбоксилировании аминокислот! Они играют ряд физиологически ролей:

— нейромедиаторы (серотонин, дофамин, ГАМК и др.);

— гормоны (норадреналин, адреналин);

— регуляторные факторы местного действия (гистамин, карнозин, спермин и др.);

Читайте так же:  Классификация аминокислот по радикалу

Накопление биогенных амино может сказаться паршивым образом на физиологическом статусе и вызывать нарушения функций в организме. Затим, есть ряд механизмов по их обезвреживанию, и усё сводится к окислительному дезаминированию этих аминов с образование соответствующих альдегидов и освобождению аммиака.

Ферменты, катализирующие эту реакцию называются моноамин- и диаминоксидазы.

И сноаа, две стадии:

— анаэробная стадия, характеризуется образованием альдегида, аммиака и восстановленного фермента.

— Затем фермент окисляет атомарным кислородом, образуется перекись водорода, которая распадает на воду и ксилород.

Образование серотонина и гистамина. Роль аминов.

Серотонин — биологическое активное вещество широкого спектра действия. Стимулирует сокращение гладкой мускулатуры, оказывает сосудосоуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием.

Гистамин образуется путём декарбоксилиро-вания гистидина в тучных клетках соединительной ткани

Выполняет в организме человека следующие функции:

• стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона);

• повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

• сокращает гладкую мускулатуру лёгких, вызывает удушье;

• участвует в формировании воспалительной реакции — вызывает расширение сосудов, покраснение кожи, отёчность ткани;

• вызывает аллергическую реакцию;

• выполняет роль нейромедиатора;

• является медиатором боли.

Образование катехоламинов и ГАМК, функции аминов.

Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов.

Адреналин, его называют «гормоном страха» из-за того, что при испуге сердце начинает биться чаще. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается.

Норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока.

Дофамин вызывает повышение сердечного выброса, оказывает вазоконстрикторное действие, улучшает кровоток и пр., стимулирует распад гликогена и подавляет утилизацию глюкозы тканями. Дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина.

γ-Аминомасляная кислота (ГАМК) — аминокислота, важнейший тормозной нейромедиатор центральной нервной системы человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.

Последнее изменение этой страницы: 2016-09-20; Нарушение авторского права страницы

Декарбоксилирование аминокислот

Отщепление карбоксильной группы аминокислот в виде СО2 катализиpуется де­каpбоксилазами, кофактоpом котоpых является пиpидоксальфосфат. Декарбоксилирование широко представлено в живой природе.Среди различных типов декарбоксилирования аминокислот для организма человека и животных наибольшее значение имеет α-декарбоксилирование, т.е. отщепление карбоксильной группы при α-углеродном атоме. В результате декарбоксилирования образуются биогенные амины. Специфичность феpмента зависит от апофеpмента.

Биогенные амины обладают pазнообpазной биологической и фаpмакологичес­кой активностью.

1. Не обладающая стpогой субстpатной специфичностью декаpбоксилаза аpомати­ческих аминокислот катализиpует декаpбоксилиpование L-изомеpов тpиптофана, 5-гидрокситpиптофана и 3,4-диоксифенилаланина. 5-Гидрокситриптамин, или серотонин обладает сосудосуживающим действием, pегулиpует pяд центpальных вегетативных функций (тем­пеpатуpа тела, аpтеpиальное давление, дыхание), является медиатоpом ЦНС (часто тоpмозного типа), повышает неспецифическую pезистентность оpганизма. Накопление серотонина в центральной нервной системе обеспечивает зимнюю спячку ряда животных и определяет биохимический фон резистентности организма при беременности.

2. Синтез катехоламинов (дофамина, норадреналина и адреналина)

Дофамин является предшественником медиатоpа симпатической неpвной системы ноpадpеналина и гоpмона мозгового вещества надпочечников — адpеналина, т.е. катехоламинов, обеспечивающих pегуляцию функций сеpдечнососудистой системы, быстpую pеакцию метаболизма на действие стpессоpных агентов. При недостатке дофамина в центральной нервной системе нарушается координация движений.

3. Гистамин образуется из гистидина в коже, слизистых и некотоpых дpугих тканях под действием гистидиндекарбоксилазы.

Гистамин – единственный биогенный амин, котоpый в физиологических концентpациях pасшиpяет кpовеносные сосуды, обладает пpовоспали­тельным действием, стимулиpует секpецию НС1 в желудке, участвует в иммунологических pеакциях, является медиатоpом боли.

4. Высокоспецифичная глутаматдекаpбоксилаза катализиpует обpазование g-аминомасляной кислоты (ГАМК) из глутаминовой кислоты в сеpом веществе коpы головного мозга. ГАМК является медиатором, вызывающим торможение ЦНС.

5. Орнитиндекарбоксилаза катализирует декарбоксидирование орнитина с образованием путресцина: орнитин ®1,4-тетраметилдиамин (путресцин) ® спермидин ® спермин. Полиамины (спеpмидин и спеpмин), а также путpесцин участвуют в пpолифеpации клеток на уpовне pегуляции синтеза полимеpных молекул (нуклеиновые кислоты, белки).

Читайте так же:  Нужно ли пить протеин

Обезвреживание биогенных аминов необходимо, поскольку в высоких дозах большинство из них обладают токсичным действием. Поэтому в тканях имеются феpментативные системы их обезвpежи­вания путем окислительного дезаминиpования с обpазованием альдегидов и аммиака.

Выделяют ФАД-содеpжащие аминооксидазы, или моноаминооксидазы — МАО и медьсодеpжащие аминооксидазы, или диаминооксидазы — ДАО. Дезаминиpование тиpамина, ноpадpеналина, адpена­лина, алифатических моноаминов катализиpуют МАО; окисление гистамина и алифатических диаминов с коpоткой цепью углеpодных атомов (путpесцин, кадавеpин) катализиpуют ДАО.

Дата добавления: 2015-06-12 ; просмотров: 2565 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Декарбоксилирование аминокислот

Декарбоксилирование – процесс отщепления карбоксильной группы аминокислот в виде СО2.

Несмотря на ограниченный круг аминокислот, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины (гистамин, g-аминомасляная кислота, серотонин и др.) оказывают сильное фармакологическое действие на физиологические функции организма. Например, гистамин оказывает сосудорасширяющее действие, g-аминомасляная кислота оказывает тормозящее действие на ЦНС.

В живых организмах открыты 4 типа декарбоксилирования аминокислот. Для тканей животных характерно a-декарбоксилирование, при котором от аминокислот отщепляется карбоксильная группа, расположенная по соседству с a-углеродным атомом:

Продуктами реакции являются СО2 и биогенные амины.

Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами – декарбоксилазами аминокислот, простетическая группа которых представлена пиридоксальфосфатом, как и у аминотрансфераз. Таким образом, в двух совершенно различных процессах обмена участвует один и тот же кофермент.

Несмотря на ограниченный круг аминокислот, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины (гистамин, g-аминомасляная кислота и др.) оказывают сильное фармакологическое действие на физиологические функции организма.

Видео удалено.
Видео (кликните для воспроизведения).

Гистамин образуется при декарбоксилировании гистидина, оказывает широкий спектр биологического действия: вызывает расширение капилляров (обладает сосудорасширяющим действием в отличие от других биогенных аминов), повышение их проницаемости (жидкость из крови выходит в межклеточную среду, что приводит к уменьшению объема крови), понижает АД, стимулирует секруцию желудочного сока и слюны, усиливает секрецию соляной кислоты в желудке; сокращает гладкие мышцы легких, что может вызвать «гистаминовый шок», что проявляется как приступ удушья; участвует в развитии болевых ощущений.

Большое количество гистамина образуется в очаге воспаления, что имеет определенный биологический смысл, вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты (санорин, димедрол и др.), оказывая влияние на рецепторы сосудов.

g-аминомасляная кислота (ГАМК) образуется при декарбоксилировании глутаминовой кислоты, оказывает тормозящее действие на ЦНС (нейрогуморальный ингибитор). Обнаружена в сером веществе головного мозга, ее введение в организм вызывает торможение в коре (центральное торможение).

Серотонин образуется из триптофана в нейронах гипоталамуса, функционирует как нейромедиатор в ЦНС, оказывает мощное сосудосуживающее действие, регулирует АД, температуру тела, дыхание, почечную фильтрацию.

Этаноламин образуется при декарбоксилировании серина. Используется для синтеза холина, ацетилхолина, фосфолипидов (фосфатидилэтаноламина, фосфатидилхолина).

Дофамин образуется из тирозина в почках, надпочечниках, синаптических ганглиях и нервах, является нейромедиатором ингибирующего типа. В других клетках является предшественником других катехоламинов (адреналина и норадреналина).

Норадреналин образуется в результате гидроксилирования дофамина в клетках нервной ткани, мозговом веществе надпочечников. Функционирует как медиатор.

Адреналин − продукт метилирования

норадреналина в клетках мозгового вещества надпочечников. Является гормоном.

Накопление биогенных аминов может отрицательно сказываться на физиологическом статусе организма. Инактивация биогенных аминов происходит путем их дезаминирования и окисления под действием ФАД-зависимой моноаминооксидазы (МАО) в митохондриях и диаминооксидазы (ДАО) в цитозоле.

Изменение концентрации биогенных аминов является причиной ряда патологических состояний. Например, при болезни Паркинсона наблюдается уменьшение количества дофамина и одним из способов лечения является снижение скорости инактивации дофамина под влиянием веществ ингибиторов МАО.

Декарбоксилирование аминокислот

Это процесс отщепления карбоксильной группы, которая находитсяв a-положении аминокислоты, с образованием аминов и СО2. Катализируют эти реакции ферменты декарбоксилазы, коферментом которых является производное vit B6. В результате декарбоксилирования аминокислот образуются:

1) биогенные амины (гистамин, дофамин, тирамин, g–аминомасляная кислота — ГАМК и др).

Декарбоксилирование аминокислот с образованием биогенных аминов наиболее активно происходит в печени, мозге и хромаффинной ткани.

2) продукты «гниения белков в кишечнике», которые являются результатом декарбоксилирование аминокислот под действием микрофлоры кишечника. Из аминокислот образуются токсические продукты, например:

Всего в организме человека образуется более 40 различных аминов. Усиление синтеза аминов наблюдается при гипоксии и голодании. Местное увеличение скорости синтеза, освобождение и инактивации катехоламинов, гистамина и серотонина свойственно очагам воспаления.

Злокачественные опухоли апудоцитарного происхождения, находящиеся в кишечнике, бронхах, поджелудочной железе, могут синтезировать большое количество серотонина (используя для этой цели до 60% суточной потребности триптофана).

Биогенные амины инактивируютсяпод действием окислительных ФАД–зависимых ферментов — моноаминооксидаз (МАО). Происходит окислительное дезаминирование аминов до альдегидов:

R–CH2–NH2 + ФАД + Н2О Þ

+ NH3 + ФАДН2

Продукты дезаминирования биогенных аминов – альдегиды – окисляются до органических кислотс помощью альдегиддегидрогеназ. Эти кислоты экскретируются с мочей или подвергаются дальнейшей окисли–тельной деградации. Кроме того, в деградации катехоламинов принимает участие катехол–О–метилтрансфераза.

Читайте так же:  Витамин д в год

ПУТИ УТИЛИЗАЦИИ АММИАКА В ОРГАНИЗМЕ. ОБМЕН ОТДЕЛЬНЫХ АМИНОКИСЛОТ. МОЛЕКУЛЯРНЫЕ ПАТОЛОГИИ ОБМЕНА АМИНОКИСЛОТ.

Результатом процессов дезаминирования и катаболизма аминокислот, нуклеотидов, биогенных аминов является образование аммиака. Кроме того, большое количество аммиака образуется в кишечнике при гниении белков, а также в скелетных мышцах при усиленной физической нагрузке. Аммиак — токсичное вещество, поэтому в организме существуют специальные пути его детоксикации.

1. Восстановительное аминирование.

Один из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах — это биосинтез амидов глутаминовой и аспарагиновой кислот (глутамина и аспарагина):

Эта реакция протекает во многих тканях, но наиболее важна для нервной, особенно чувствительной к токсическому действию аммиака. Первая реакция представляет собой обращение глутаматдегидрогеназной реакции (обратная окислительному дезаминированию ГЛУ).

Обезвреживание аммиака путем синтеза глутамина имеет и анаболическое значение, поскольку глутамин используется для синтеза ряда соединений. Прежде всего нужно отметить, что глутамин — одна из 20 аминокислот, входящих в белки. Кроме того, амидная группа глутамина используется для синтеза аспарагина, глюкозамина и других аминосахаров, пуриновых и пиримидиновых нуклеотидов. Таким образом, в этих реакциях азот аммиака включается в разнообразные структурно-функциональные компоненты клетки.

Глутамин затем может поступать во все ткани, где осуществляется его гидролиз при участии глутаминазы:

Подобным образом происходит образование аспарагина (через ЩУК).

| следующая лекция ==>
Некоторые клинические аспекты | Образование аммонийных солей.

Дата добавления: 2017-09-19 ; просмотров: 1509 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Декарбоксилирование аминокислот, образование биогенных аминов, их роль в обмене веществ и регуляции физиологических функций.

По мере функционирования клеток многие белки становятся непригодными для осуществления своих функций и подвергаются под влиянием клеточных эндо- и экзопептидаз распаду до аминокислот, которые при избыточном содержании в тканях могут подвергнуться распаду. Распад осуществляется в нескольких направлениях в митохондриях. Небольшая часть аминокислот в клет­ках животного организма декарбоксилируется, в резуль­тате из них образуются так называемые биогенные амины, которые в определенных тканях и органах оказывают выра­женное физиологическое действие. Биогенные амины образуются в небольшом количестве. Действие их мощное, но скоропроходящее, т.к. они быстро разрушаются. Разрушение биогенных аминов происходит под влиянием ДАО или МАО с образованием альдегидов, аммиака и перекиси водорода.

Легче и чаще всего декарбоксилируются циклические (тирозин, триптофан, гистидин) и дикарбоновые (глутаминовая и аспарагиновая) кислоты. В частности из тирозина образуются тирамин, дофамин, норадреналин; из триптофана — триптамин. Кро­ме того, триптофан может служить источником образования серотонина — 5-гидрокситриптамина, образующегося при декарбоксилировании 5-гидрокситриптофана, последний в свою очередь образу­ется при гидроксилировании триптофана.

Серотонин содержится в тромбоцитах, много его в мозге и слизистой кишечника (90—95%), где он был впервые обна­ружен. Серотонин обладает сосудосуживающим действием, по­вышает кровяное давление, усиливает перистальтику кишеч­ника, играет большую роль в процессах нервной деятельности (малые количества подавляют, большие — стимулируют нервную деятельность. Нарушения обмена серотонина способствует развитию психических заболеваний (мании, фобии, депрессии). Серотонин стимулирует коллагеногенезВозникновение психических рас­стройств (мании преследования, фобии) многие связывают с нарушением обмена серотонина. При действии серотонина на головной мозг снижается потребление мозгом глюкозы, по­глощение О2, лактата и неорганических фосфатов.

Гистамин образуется из гистидина. Содержится в больших количествах в стенке желудка. Накапливается при травмах, аллергических реакциях, способствует образованию НСI желудочного сока, резко расширяет сосуды и увеличивает проницаемость сосудов, участвует в патогенезе аллергических, воспалительных процессов, вызывает спазм бронхов и падение давления (расширение сосудов), отек мозга и легких (усиление проницаемости сосудов).

ГАМК образуется из глутаминовой кислоты, нейромедиатор, является медиатором торможения, улучшает кровоснабжение головного мозга, утилизацию глюкозы мозгом, улучшает память.

b-аланин образуется из аспарагиновой кислоты, входит в состав НSКоА, ансерина и карнозина, пантотеновой кислоты.

Декарбоксилирование аминокислот и их производных

Некоторые АК и их производные могут подвергаться декарбоксилированию – отщеплению α-карбоксильной группы. У млекопитающих декарбоксилируются: три, тир, вал, гис, глу, цис, арг, орнитин, SAM, ДОФА, 5-окситриптофан и т.д. Реакцию необратимо катализируют декарбоксилазы, которые содержат в активном центре пиридоксальфосфат. Механизм реакции похож на реакцию переаминирования.

Продуктами реакции являются СО2 и биогенные амины, выполняющие регуляторные функции (гормоны, тканевые гормоны, нейромедиаторы).

Серотонин образуется из три в надпочечниках, ЦНС и тучных клетках.

Серотонин – возбуждающий нейромедиатор средних отделов мозга (проводящих путей) и гормон. Стимулирует сокращение гладкой мускулатуры, вазоконстриктор, регулирует АД, температуру тела, дыхание, антидепрессант.

ГАМК образуется и разрушается в ГАМК-шунте ЦТК в высших отдела мозга. Он имеет очень высокую концентрацию.

ГАМК – тормозной нейромедиатор (повышает проницаемость постсинаптических мембран для К+), повышает дыхательную активность нервной ткани, улучшает кровоснабжение головного мозга.

Гистамин образуется в тучных клетках. Секретируется в кровь при повреждении ткани, развитии иммунных и аллергических реакций.

Гистамин – медиатор воспаления, аллергических реакций, пищеварительный гормон:

1. стимулирует секрецию желудочного сока, слюны;

2. повышает проницаемость капилляров, расширение сосудов, покраснение кожи, вызывает отеки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

Читайте так же:  Йохимбин и л карнитин сочетание

3. сокращает гладкую мускулатуру легких, вызывает удушье;

4. вызывает аллергическую реакцию;

6. медиатор боли.

Дофамин образуется (фен → тир → ДОФА → дофамин) в мозге и мозговом веществе надпочечников.

Дофамин – нейромедиатор среднего отдела мозга.

ДЕКАРБОКСИЛИРОВАНИЕ

ДЕКАРБОКСИЛИРОВАНИЕ — процесс отщепления двуокиси углерода (CO2) от органических кислот или аминокислот. В биол, системах существенное значение — биохимическое и физиологическое — имеет Д. аминокислот и кетокислот. Реакция Д. может составлять часть общего механизма превращения аминокислот, в результате чего образуются биогенные амины, обладающие высокой фармакологической активностью.

Д. аминокислот является одним из основных путей промежуточного обмена аминокислот у всех организмов. В зависимости от хим. природы аминокислоты в результате Д. образуются биогенные амины (см.) или новые бета-, и гамма-монокарбоновые аминокислоты. Реакции Д. катализируются специфическими ферментами — декарбоксилазами (см.) и протекают по следующей схеме:

Ферментативному Д. подвергаются только L-стереоизомеры аминокислот; исключение составляет мезо-альфа, эпсилон-диаминопимелиновая к-та, в к-рой содержится два стереоизомерных атома углерода, один находится в L-, а другой в D-конфигурации. В организме могут происходить сопряженные реакции Д. и переаминирования (см.) или реакции Д. и дезаминирования (см.) лизина, аргинина и их производных. Так, у бактерий Pseudomonas обнаружен фермент, катализирующий окислительное превращение L-лизина до дельта-аминовалериановой к-ты, CO2 и NH3:

В животных тканях доказано наличие фермента декарбоксилазы ароматических L-аминокислот (КФ 4.1.1.28), катализирующего Д. почти всех ароматических аминокислот.

Ортотирозин, метатирозин и альфа-метилпроизводные триптофана, тирозина и ДОФА также декарбоксилируются этим ферментом. Ферментные препараты из мозгового слоя надпочечников и почек крыс не катализируют, однако, Д. триптофана и тирозина, но декарбоксилируют ДОФА. В тучных клетках найден особый фермент, катализирующий, по-видимому, Д. гистидина. Имеются данные, что триптофан декарбоксилируется ферментными препаратами из почек лишь после окисления его до 5-окситриптофана и что именно 5-окситриптофан является субстратом для Д., в результате к-рого образуется физиологически активный 5-окситриптамин (серотонин).

Большое физиол. значение для человека и животных имеет Д .L-глутамино-вой к-ты (см. Глутаминовая кислота). Открытие гамма-аминомасляной к-ты (ГАМК) последовало за обнаружением в гомогенатах мозга L-глутаматдекар-боксилазы (КФ 4.1.1.15), катализирующей Д. L-глутамата с образованием гамма-аминомасляной кислоты.

Есть основания считать, что ГАМК относится к числу передатчиков нервных импульсов. Кроме того, ГАМК может переаминироваться с пировиноградной, альфа-кетоглутаровой и, возможно, рядом других кетокислот с образованием соответствующей аминокислоты и полуальдегида янтарной к-ты; окисление последнего до янтарной к-ты обеспечивает функционирование обходного пути окисления L-глутами-новой к-ты, минуя альфа-кетоглутаровую к-ту. На схеме показано сопряжение двух путей окисления L-глутамино-вой к-ты с циклом Трикарбоновых к-т (см. Трикарбоновых кислот цикл).

Для митохондрий мозга именно L-глутаминовая к-та, а не глюкоза является основным субстратом дыхания. В этой связи обходной путь превращения L-глутаминовой к-ты с участием глутаматдекарбоксилазы приобретает большое физиол, значение. По полученным на высших растениях данным В. Л. Кретовича (1972), регулированию системы глутаминовая к-та ГАМК + CO2 принадлежит существенная роль в общем процессе регуляции содержания в клетке глутаминовой к-ты и глутамина, являющегося исходным веществом для биосинтеза многих жизненно важных для растительного организма соединений. Вероятно, что такую же роль Д. L-глутаминовой к-ты играет в организме животных и человека.

Процесс Д. широко распространен у микроорганизмов. При гниении белков образование аминов вызывается Д. различных аминокислот под действием бактериальных декарбоксилаз (см. Гниение).

Значительных достижений в исследовании Д. аминокислот у микроорганизмов добились советские исследователи. С. Р. Мардашев в 1947 г. из клеток бактерии Pseudomycobacterium n. sp. выделил специфическую декарбоксилазу, отщепляющую CO2 от бета-COOH-группы L-аспарагиновой к-ты с образованием a-аланина. В 1950 г. в той же лаборатории был выделен вид Micrococcus п. sp., содержащий декарбоксилазу, специфичную в отношении L-гистидина. Используя эти бактерии, С. Р. Мардашев с сотр. разработал быстрый и точный метод определения аспарагиновой к-ты и гистидина в белках. Д. L-аспарагиновой к-ты является уникальной реакцией, поскольку при этом декарбоксилируется бета-COOH-, а не альфа-COOH-группа, как это обычно происходит при Д. аминокислот.

Ферментные препараты аспартат-бета-декарбоксилазы (аспартат-1-декар-боксилазы; КФ 4.1.1.11) были получены из ряда микроорганизмов, в т. ч. и из Achromobacter; в последнем случае фермент был получен в кристаллическом состоянии. Этот фермент активируется не только пиридоксаль-5′-фосфатом, что характерно для декарбоксилаз аминокислот, но и каталитическими количествами альфа-кетокислот.

Реакции Д. аминокислот широко распространены также у высших зеленых растений. Важно отметить, что реакции Д. у растений имеют прямое отношение к биосинтезу ряда алкалоидов.

С. Р. Мардашевым и его сотр. было установлено, что уроканиновая к-та является ингибитором гистидиндекарбоксилазы (КФ 4.1.1.22). Т. к. содержание уроканиновой к-ты в коже больных при некоторых дерматозах понижено, можно было предвидеть в этом случае более активное Д. гистидина с образованием гистамина, способствующего дерматозу.

Была сделана попытка применения леч. мазей, содержащих уроканиновую к-ту, для терапии дерматозов; предварительные данные свидетельствуют о положительном эффекте.

Гамма-Аминомасляная к-та — продукт Д. L-глутамата — применяется для лечения патол, состояний, связанных с нарушением функций ц. н. с.: при ослаблении памяти, атеросклерозе мозговых сосудов и нарушениях мозгового кровообращения, после перенесенных травм и параличей, при головной боли, бессоннице, головокружениях, связанных с гипертонической болезнью, в педиатрии — при умственной отсталости.

Читайте так же:  С чем мешать креатин

Д. кетокислот было впервые обнаружено К. Нейбергом в 1911 г. В экстрактах из пивных дрожжей им были найдены специфические ферменты, катализирующие Д. пировиноградной, альфа-кетомасляной, альфа-кетовалериановой и других a-кетокислот с образованием соответствующего альдегида и CO2. Реакция Д. кетокислот протекает по схеме:

Позднее было доказано существование Д. альфа-кетоглутаровой к-ты. Из экстрактов высших растений были выделены специфические декарбоксилазы альфа-кетоглутаровой и щавелево-уксусной к-т. Было показано, что Д. щавелево-уксусной к-ты (оксалата) с образованием пировиноградной к-ты (пирувата) осуществляется p-декарбоксилазой, атакующей бета-COOH-группу, что отличает ее от альфа-декарбоксилазы Нейберга.

В тканях животных альфа-кетокислоты подвергаются окислительному Д. с образованием соответствующих укороченных на один атом углерода карбоновых к-т и CO2. В процессе тканевого обмена углеводов, жиров и белков в качестве промежуточных продуктов образуются Пировиноградная, альфа-кетоглутаровая, щавелево-уксусная и другие а-кетокислоты. Накопление их (особенно пировиноградной к-ты, образующейся также в результате других метаболических превращений) может привести к нарушению физиол, функций, и в первую очередь — функций ц. н. с. Поскольку все декарбоксилазы a-кетокислот являются сложными ферментами, коферментом которых является фосфорилированная форма витамина B1—тиаминпирофосфат, то при B1-авитаминозе имеют место нарушения функций нервной системы, напр, при полиневрите.

Выяснению путей окисления пировиноградной к-ты посвящено много работ. В 1943 г. Г. Кребс предложил схему превращения пировиноградной к-ты через цикл ди- и трикарбоновых к-т (см. Трикарбоновых кислот цикл), в к-ром одна молекула пировиноградной к-ты окисляется с образованием трех молекул CO2 и двух молекул H2O (см. Окисление биологическое). Выяснены детали механизма этой реакции и пути ее регуляции. Основным путем превращения пировиноградной к-ты в животных тканях, у растений и у аэробных микроорганизмов является ее окислительное Д. до ацетил-КоА, катализируемое мультиферментным пируватдегидрогеназным комплексом. Д. альфа-кетоглутаровой к-ты также осуществляется при участии аналогичного альфа-кетоглутаратдегидрогеназного комплекса.

Полное окисление альфа-кетокислот, начинающееся с окислительного Д., до CO2 и H2O способствует освобождению энергии, необходимой для протекания процессов жизнедеятельности в любых живых организмах, причем значительная часть этой энергии накапливается в высокоэргических пирофосфатных связях АТФ.

Биологически важные реакции а-аминокислот. Декарбоксилирование. Образование биогенных аминов.

Аминокислоты — это органические бифункциональные соединения, в состав которых входят карбоксильная группа —СООН и аминогруппа —NH2.

Аминокислоты реагируют как с кислотами, так и с основаниями:

Трансаминирование — одна из реакций метаболизма аминокислот, которая заключается в переносе аминогруппы (NH2) из аминокислоты в кетокислоты; в результате образуется другая кетокислота и аминокислота.

Дезаминирование — этоотщепление аминогруппы (—NH2) из молекулы органического соединения. Дезаминирование играет важную роль в процессах обмена веществ, в частности в катаболизме аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы)

Декарбоксилирование – это процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины – оказывают сильное фармакологическое действие на множество физиологических функций человека и животных. Например, в животных тканях с высокой скоростью протекает декарбоксилирование гистидина под действием специфической декарбоксилазы.

Общая качественная реакция α-аминокислот – это реакция с нингидрином. Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8600 —

| 7071 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Видео удалено.
Видео (кликните для воспроизведения).

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источники


  1. Круковер, В.И. 300 советов диетолога / В.И. Круковер. — Москва: Мир, 2004. — 304 c.

  2. Садикова, Н. Б. 10000 советов. Лечебное и оздоровительное питание / Н.Б. Садикова. — М.: Мир и Образование, 1999. — 704 c.

  3. Гурвич, М.М. Диетология + диетические столы / М.М. Гурвич. — М.: Эксмо, 2015. — 592 c.
  4. Децянь, Ши Гимнастика Бодхидхармы / Ши Децянь , А.А. Маслов. — М.: Феникс, 2006. — 160 c.
  5. Крайнов, В.П. Качественные методы в физической кинетике и гидрогазодинамике: моногр. / В.П. Крайнов. — М.: [не указано], 2012. — 95 c.
Декарбоксилирование аминокислот образование биогенных аминов
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here