Для аминокислот характерны свойства

Сегодня предлагаем ознакомится со статьей на тему: для аминокислот характерны свойства с профессиональным описанием и объяснением.

Для аминокислот характерны свойства

Химические свойства аминокислот

Реакции по карбоксильной группе

Декарбоксилирование карбоновых кислот легко протекает, если в a-положении к карбоксилу находится электроноакцепторная группа как, например, СООН (см. главу Дикарбоновые кислоты), NO2, CCl3 и другие. В аминокислотах таким электроноакцептором служит аммониевая группа NH3 + . Реакцию осуществляют при нагревании a-аминокислот в присутствии солей Cu(II) и поглотителей углекислого газа (Ba(OH)2).

В живых организмах этот процесс протекает под действием ферментов – декарбоксилазы и пиридоксальфосфата и приводит к образованию биогенных аминов.

В присутствии окислителей дезаминирование не останавливается на стадии образования амина, протекает окисление аминогруппы до иминогруппы и последующий гидролиз с образованием альдегида.

Этерификация аминокислот спиртами катализируется газообразным хлороводородом. Образующиеся при этом аммониевые соли сложных эфиров аминокислот превращают в нейтральные соединения, действуя на них органическими основаниями, например, триэтиламином.

Наличие двух функциональных групп в молекуле аминокислоты обусловливает реакцию межмолекулярного ацилирования с образованием амидов. Образующаяся связь называется пептидной, а соединения – пептидами или полипептидами. (см. Белки).

Отношение аминокислот к нагреванию

Аминокислоты с различным взаимным расположением амино- и карбоксильных групп при нагревании ведут себя различно. α-Аминокислоты димеризуются и образуют циклические продукты дикетопиперазины. При этом протекает взаимное ацилирование аминогруппы одной молекулы аминокислоты карбоксильной группой другой молекулы.

γ -Аминокислоты при нагревании превращаются в лактамы – продукты внутримолекулярного ацилирования аминогруппы карбоксилом.

β-Аминокислоты отщепляют молекулу аммиака и дают α,β-непредельные кислоты.

Замыкание β-лактамного цикла происходит при взаимодействии β-аминокислот с дициклогексилкарбодиимдом (ДЦК).

Нингидринная реакция (реакция Руэманна)

При кратковременном нагревании α-аминокислот с нингидрином в воде наблюдается изменение окраски раствора с бесцветного на фиолетовый за счет образования нингидринного пигмента (пурпура Руэманна). Эта качественная реакция используется для визуальной идентификации a-аминокислот на тонкослойных и бумажных хроматограммах.

α-Аминокислоты образуют с катионами металлов внутрикомплексные соли. Например, глицин реагирует со свежеосажденным гидроксидом меди, давая синий раствор глицината меди.

Подобно ариламинам ароматические аминокислоты алкилируются, ацилируются и диазотируются по аминогруппе. Аналогично другим замещенным карбоновым кислотам, ароматические аминокислоты превращаются в сложные эфиры и амиды по карбоксильной группе. Обратим внимание на некоторые специфические свойства антраниловой кислоты, позволяющие использовать ее в органическом синтезе. Так, она является исходным соединением в одном из самых удобных методов генерации дегидробензола. Диазотирование антраниловой кислоты алкилнитритами дает цвиттер-ионную соль диазония, которая термически или фотохимически разлагается с образованием дегидробензола.

В промышленности из антраниловой кислоты синтезируют индиго – синий кубовый краситель.

Для аминокислот характерны свойства

Анализ белковых молекул

Для определения аминокислот, входящих в состав белка используют методы, основанные, как правило, на частичном или полном гидролизе полипептидной цепи. Обычно проводят кислотный или ферментативный гидролиз белка и аминокислоты анализируют различными хроматографическими методами. Таким способом можно установить количественный и качественный состав аминокислот, входящих в состав белка, но не их последовательность. Остановимся на некоторых химических способах анализа белковых молекул.

Свободные аминокислоты обнаруживают нингидринной реакцией (см. Нингидринная реакция). Эту же реакцию дают и белки, но в более жестких условиях – при кипячении с водным раствором нингидрина.

Для обнаружения пептидных связей в белках служит биуретовая реакция (реакция Пиотровского) – образование ярко-окрашенных комплексов при взаимодействии белков с гидроксидом меди (II) в присутствии щелочи. В эту реакцию вступают все пептиды, имеющие минимум две пептидные связи. Цвет комплекса, получаемый при биуретовой реакции с различными пептидами, несколько отличается и зависит от длины пептидной цепи. Пептиды с длиной цепи от четырех аминокислотных остатков и выше образуют красный комплекс, трипептиды – фиолетовый, а дипептиды – синий. Реакцию используют не только для качественного, но и для количественного определения белков.

Пептиды, содержащие ароматические и гетероароматические аминокислоты дают положительную ксантопротеиновую реакцию (реакция Мульдера) – появление желтого окрашивания при действии конц. азотной кислоты. При добавлении щелочи цвет смеси меняется на оранжевый.

Серосодержащие аминокислоты в составе белка определяют по образованию черного осадка сульфида свинца при нагревании с ацетатом свинца – сульфгидрильная реакция (реакция Фоля).

Триптофан обнаруживают при помощи реакции с п-диметиламинобензальдегидом в среде серной кислоты – реакция Эрлиха . Образующийся продукт конденсации имеет красно-фиолетовое окрашивание.

Определение С- и N-концевых аминокислот

N-Концевые аминокислоты определяют по реакции с 2,4-динитрофторбензолом или дансилхлоридом. Свободная аминогруппа N-концевой аминокислоты арилируется или ацилируется, белок гидролизуют, образовавшиеся N-(2,4-динитрофенил)- (А) или N-(5-диметиламинонафтил-1-сульфо)производные (Б) существенно отличаются по физико-химическим свойствам от остальных аминокислот, поэтому их легко отделяют и идентифицируют.

С-Концевые аминокислоты определяют методом Акароби – при нагревании пептида с гидразингидратом пептидные связи гидролизуются и образуется смесь гидразидов аминокислот. С-Концевая аминокислота не реагирует с гидразином, остается в свободном виде, ее выделяют и идентифицируют.

Удобным методом определения последовательности аминокислот (первичной структуры белка) является способ деградации полипептидной цепи с помощью фенилизотиоцианата (метод Эдмана). N-Концевые аминокислоты последовательно отщепляются от цепи в виде фенилтиогидантоинов и идентифицируются.

Химические свойства аминокислот

Аминокислоты вступают во многие реакции благодаря наличию в их молекуле нескольких реакционноспособных групп. Алифатические аминокислоты проявляют химические свойства, характерные для карбоксильной группы и аминогруппы. Другие аминокислоты вступают еще в реакции, в которых принимают участие функциональные группы их боковых цепей.

Специфические для аминокислот реакции

1. Реакция с нингидрином. — Это специфическая характерная для аминокислот реакция. Она может быть использована для точного определения очень небольших концентраций аминокислот. Все аминокислоты и пептиды, содержащие свободную б-аминогруппу дают с нингидрином синюю окраску, пролин и оксипролин, содержащие замещенную б-аминогруппу, образуют с нингидрином желтую окраску.

Читайте так же:  Поступление аминокислот в кровь

Реакция с 1-фтор-2,4-динитробензолом. Реакция б-аминогруппы с 1-фтор-2,4-динитробензолом впервые была использована Ф.Сэнгером для количественного введения метки в аминогруппы аминокислот и пептидов. При взаимодействии с 1-фтор-2,4-динитробензолом в слабо щелочных растворах б-аминокислоты превращаются в 2,4-динитрофенилпроизводные, окрашенные в желтый цвет. Эта реакция используется для идентификации N-концевых аминокислот в белках.

3. Реакция с дансилхлоридом. — 1-диметиламино-нафталин-5-сульфонилхлорид. Благодаря интенсивной флуоресценции дансильных групп дансилпроизводные аминокислот можно обнаружить флуориметрическим методом. Этот метод более чувствительный, чем динитрофторбензольный. Он также используется для определения N-концевых аминокислот в белках.

Фенилтиогидантоиновый метод — метод Эдмана. В этом методе в качестве реагента используется фенилтиоизоцианат. Полученные

фенилтиогидантоиновые производные аминокислот легко идентифицировать при помощи хроматографических методов. Этот метод широко используется для определения N-концевых аминокислот в белках.

Фенилтиогидантоиновый метод положен в основу автоматизированного метода определения аминокислотной последовательности белков — метод Мейерифилда.

Существует ряд специфическихреакций на функциональные группы боковых цепей аминокислот, которые позволяют определить присутствие их в молекуле белка.

При нагревании белка в сильно щелочном растворе серусодержащие аминокислоты — цистеин, цистин и метионин — отщепляют серу в виде щелочного сульфида:

RSH + 2 NaOH ROH + Na2S + Н2О

И этот сульфид при добавлении свинцовой соли образует черный сернистый свинец.

8. Реакция Миллона — реакция основана на образовании окрашенного в красный цвет ртутной соли нитросоединения тирозина. Она используется для качественного и количественного определения тирозина в белке и гидролизатах белка.

Химические свойства. Аминокислоты дают реакции, характерные для карбоксильной и аминогрупп, проявляют специфические свойства

Аминокислоты дают реакции, характерные для карбоксильной и аминогрупп, проявляют специфические свойства, обусловленные наличием двух функциональных групп и их взаимным расположением.

а) Кислотно-основные свойства

Молекулы аминокислот имеют две функциональные группы, противоположные по характеру, кислую карбоксильную группу и основную аминогруппу, являются амфотерными соединениями. В кристаллическом состоянии существуют в виде внутренних солей, т.е. биполярных ионов:

Для ароматических аминокислот образование биполярных ионов менее характерно из-за меньшей основности аминогруппы.

Аминокислоты — нелетучие кристаллические вещества с высокими температурами плавления. Они нерастворимы в неполярных органических растворителях и растворимы в воде. Их молекулы обладают большими дипольными моментами.

Поведение биполярного иона в водных растворах:

в кислой среде аминокислоты присоединяют протон и существуют преимущественно в виде катионов

в щелочной среде биполярный ион отдает протон и превращается в анион

Н3N + -R-COO — + OH — ↔ Н2N-R-COO — + HOH.

Значение рН, при котором молекула аминокислоты находится в растворе в виде биполярного иона, называется изоэлектрической точкой. Для α-аминокислот рН

Диаминокарбоновые кислоты или аминодикарбоновые кислоты также образуют внутренние соли, но из-за присутствия второй амино- или карбоксильной группы сохраняют основную или кислую реакцию.

б) Реакции карбоксильной группы

Аминокислотам присущи характерные свойства карбоновых кислот — образование солей

образование галогенангидридов и ангидридов требует предварительной защиты аминогруппы, например ацилированием.

в) Реакции аминогруппы

Аминокислоты дают все реакции первичных аминов (см. «Амины») — взаимодействие с азотистой кислотой, алкилирование и ацилирование в щелочной среде.

г) Реакции с одновременным участием карбоксильной и аминогрупп:

1. образование пептидной связи

,

полученное соединение называется дипептидом.

2. отношение к нагреванию α-аминокислот (образование дикетопиперазинов):

β-аминокислот (образование непредельных кислот):

γ, δ, ε-аминокислот (образование циклических амидов — лактамов):

д) действие окислителей на α-аминокислоты сопровождается образованием альдегидов:

Пептиды.Петиды — это полиамиды — продукты поликонденсации, построенные из α-аминокислот. По числу аминокислотных остатков в молекуле пептида различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, называют олигопептидами, более 10 аминокислотных остатков — полипептидами. Природные полипептиды, включающие более 100 аминокислотных остатков, называют белками.

Название пептида строят на основе тривиальных названий входящих в его состав аминокислотных остатков, которые перечисляют, начиная со свободной аминогруппы. При этом в названиях всех аминокислот, за исключением последней, суффикс «ин» заменяют на суффикс «ил».

Белки наряду с нуклеиновыми кислотами играют важную роль в живой природе. Число белков велико, разнообразны и их функции. Существуют простые белки (протеины) и сложные белки (протеиды), содержащие и небелковую часть.

Различают несколько уровней организации белковых макромолекул: первичная, вторичная, третичная и четвертичная.

Первичная структура — это полипептидная цепь с определенной последовательностью аминокислотных остатков.

Вторичная структура — это определенная пространственная форма полипептидной цепи: α-спираль и структура складчатого листа (β- структура). Вторичная структура образована водородными связями

Третичная структура характеризует пространственное расположение α-спирали или другой формы вторичной структуры.

Четвертичная структура характеризует ассоциацию нескольких полипептидных цепей.

Поскольку белки построены из молекул α-аминокислот, то они по химическим свойствам им подобны. Белки обладают амфотерными свойствами. Существуют качественные реакции, определяющие особенности в строении молекулы белка. Для белков характерно явление осаждения: обратимое осаждение или высаливание и необратимое осаждение или денатурация.

Знаете ли вы,что

— В 1820 году французский химик Анри Браконно в результате длительного нагревания кожи, сухожилий получил первую аминокислоту, сладкую на вкус — гликоколл (глицин).

-В 1838 году голландский химик Г. Мульдер обнаружил в составе этого соединения азот.

В 1843 году Э Хорсфорд установил формулу этого вещества.

п-Аминобензойная кислота (ПАБК) способствует росту микроорганизмов, является витамином, обеспечивающим нормальный обмен веществ, её сложные эфиры — анестетики (анестезин, новокаин).

-γ-Аминомасляная кислота (ГАМК) — принимает участие в метаболических процессах в головном мозге и является нейромедиатором.

-Глутаминовая кислота и ее соли используют в качестве пищевых добавок, усиливающих вкус и аромат продуктов. Впервые эти соединения из сушенных водорослей выделил в 1909 году японский ученый К. Икеда.

Читайте так же:  В каких продуктах содержатся аминокислоты

-Глицин используется в качестве лекарственного средства, укрепляющего организм и стимулирующего работу головного мозга.

-Аспартам — дипептид, синтетический заменитель сахара, слаще которого в 300 раз. Добавляют в газированные напитки, жевательную резинку; вызывает некоторые заболевания, нарушает обмен веществ.

-В 1963 году из отдельных аминокислот осуществлен синтез природного белка — инсулина (гормон поджелудочной железы, регулирует в организме содержание глюкозы в крови).

Для аминокислот характерны свойства

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Для аминокислот характерны свойства

4.3. Свойства аминокислот

Физические свойства . Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

[3]

Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

H 2 N–CH 2 –COOH + HCl ® Cl — [H 3 N–CH 2 –COOH] +

Как карбоновые кислоты они образуют функциональные производные:

H 2 N–CH 2 –COOH + NaOH ® H 2 N–CH 2 –COO — Na + + H 2 O

Читайте так же:  Лучший спортпит для набора мышечной массы

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп e -аминокапроновой кислоты, в результате которого образуется e -капролактам (полупродукт для получения капрона):

Межмолекулярное взаимодействие трех a -аминокислот приводит к образованию трипептида и т.д.

Видео удалено.
Видео (кликните для воспроизведения).

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Свойства аминокислот

Читайте также:

  1. II. Назначение и боевые свойства химического и биологического оружия
  2. IY. Ароматические аминокислоты
  3. Z-преобразование и его свойства
  4. Алгоритм и его свойства
  5. Алгоритм и его свойства
  6. Алгоритм. Свойства алгоритмов
  7. Аминокислоты
  8. Благо. Товар и его свойства.
  9. Боевые свойства и поражающие действия бактериологического оружия. Очаги биологического поражения.
  10. В иерархической информационной модели объекты или их свойства распределены по уровням, причем элементы нижнего уровня входят в состав более высокого уровня.
  11. В многофакторных моделях рассматривается также такая величина, как значимость показателя. Разные свойства продукта имеют неодинаковую важность для потребителей. Модель Фишбейна
  12. Вектор. Основные свойства.

Аминокислоты, их классификация

Состав белков

Функции белков

В растениях белки выполняют разнообразные функции. Важнейшими из них являются каталитическая; запасная; защитная; структурная.

В зависимости от выполняемой в живом организме функции белки делят на несколько классов.

1. Белки-ферменты. Это наиболее многочисленная группа белков. Они катализируют биохимические реакции. С помощью белков-ферментов в живой клетке достигается закономерная последовательность химических превращений веществ.

2. Запасные белки. В больших количествах они накапливаются в клетках зерна и семян при созревании на растении. При прорастании зерна и семян запасные белки гидролизуются до аминокислот, которые затем используются клеткой для формирования нового растения.

3. Защитные белки предохраняют живой организм от разрушения или способствуют его выживанию при повреждении. Растения вырабатывают белки — токсины. Защитная функция их заключается в том, что они защищают растения от поедания их животными, ингибируют протеолитические ферменты насекомых-вредителей, повреждающих семена многих растений.

4. Структурные белки входят в состав покровных тканей растений, семян и плодов. Они составляют также структурную основу биомембран клеток. При этом органеллы клетки сохраняют необходимую последовательность биохимических реакций.

Элементарный состав белков включает углерод, кислород, водород, азот, иногда серу или селен. В состав белков могут входить также железо, медь, цинк, фосфор и некоторые другие элементы.

Например: В составе белка зерна пшеницы содержится: углерода—от 51 до 53 %, кислорода — от 21 до 23, водорода — от 6 до 8, азота —от 16 до 19, серы — от 0,7 до 1,3 %.

Структурными компонентами белков — их мономерами — являются аминокислоты.

Несмотря на то, что в природе известно свыше 150 аминокислот, белки состоят в основном из 20 аминокислот.

Аминокислоты — это соединения, содержащие по крайней мере одну амино- и одну карбоксильную группу. По химическому строению это производные жирных кислот, у которых водород в a-положении замещен на аминную (-NH2) группу. Каждая аминокислота кроме химического имеет тривиальное (традиционное) название. Иногда название происходит от источника, из которого аминокислота была впервые выделена, или ее свойств.

Например: Аспарагиновая кислота — первая аминокислота, открытая в 1806 г., была обнаружена в проростках растения аспарагуса. Глутаминовая кислота — в клейковине пшеницы (в переводе с английского «gluten»—клейковина). Глицин получил свое название за сладкий вкус (от греческого «glykos» — сладкий).

Вот наиболее известные основные аминокислоты:

незаменимые, эссенциальные:

Существует несколько способов классификации аминокислот, входящих в состав белков. В основу одного из способов классификации положено количество аминных и карбоксильных групп в молекулах. Различают:

1. Моноаминомонокарбоновые кислоты:

2. Моноаминодикарбоновые аминокислоты:

Эти кислоты могут входить в состав белков как в виде кислот, так и в виде амидов: аспарагина и глутамина.

3. Диаминомонокарбоновые аминокислоты:

4. Гетероциклические аминокислоты:

По другой классификации аминокислоты подразделяют в зависимости от химического строения боковой цепи в молекуле аминокислоты на

— алифатические: глицин, аланин, валин, лейцин, изолейцин;

гидроксиаминокислоты: серин и треонин;

дикарбоксильные: аспарагиновая и глутаминовая кислоты;

амиды дикарбоновых аминокислот: аспарагин и глутамин;

серосодержащие аминокислоты: цистеин и метионин;

ароматические аминокислоты: фенилаланин, тирозин, триптофан; иминокислоту: пролин.

Также аминокислоты белков принято также делить на три группы в зависимости от состояния аминокислоты — ее электрического заряда, полярности, гидрофобности — при нейтральных рН.

Ф и з и ч е с к и е с в о й с т в а. Аминокислоты представляют собой бесцветные кристаллические вещества. Большинство из них легко растворяются в воде и 80%-ном этаноле. Многие a-аминокислоты обладают сладким вкусом, иногда с некоторым неприятным привкусом.

О п т и ч е с к и е с в о й с т в а. Стереоспецифичность— это характерная особенность живых клеток. Она подтверждает, что трехмерная структура биомолекул имеет чрезвычайно важное значение для их биологических функций. Аминокислоты являются оптически активными соединениями, за исключением глицина. Это объясняется наличием в a-положении асимметрического или хирального атома углерода.

Формы L и D относятся к абсолютной конфигурации аминокислот. Принадлежность к L— или D-ряду определяется взаимным расположением аминной и карбоксильной групп и радикала аминокислот. К L-ряду относят те аминокислоты, у которых атом водорода, карбоксильная и аминная группы находятся по отношению друг к другу по часовой стрелке. К D-ряду относят те аминокислоты, у которых атом водорода, карбоксильная и аминная группы находятся против часовой стрелки:

Синтетические аминокислоты являются рацематами, т. е. смесью, состоящей из 50 % L-аминокислот и 50 % D-аминокислот.

Читайте так же:  Аминокислоты тема по химии

Молекулы, имеющие асимметрический атом углерода, способны вращать плоскость поляризованного луча вправо. В этом случае их обозначают знаком (+) или влево — знаком (-). Направление отклонения поляризованного луча зависит от природы растворителя, рН среды и других факторов.

Например: Все встречающиеся в растительных белках аминокислоты принадлежат к L-ряду. D-формы аминокислот не усваиваются организмом человека и животных. D-формы аминокислот встречаются у некоторых антибиотиков.

Изоэлектрическая точка. Аминокислоты представляют собой биполярные ионы (внутренние соли). Под действием электрического тока они мигрируют к катоду или аноду (в зависимости от рН среды). Значение рН среды, при которой устанавливается равенство положительных и отрицательных зарядов, называется изоэлектрической точкой. В изоэлектрической точке аминокислоты электрически нейтральны. Например:

| следующая лекция ==>
Концентрация белков в сырье и продуктах | Х и м и ч е с к и е с в о й с т в а

Дата добавления: 2014-01-06 ; Просмотров: 633 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

[2]

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

[1]

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

Реакции аминокислот

Читайте также:

  1. Cинтез a — аминокислот.
  2. Аллергические реакции при кандидозе
  3. Аналитические реакции. Аналитический признак.
  4. Вегетативные реакции на эмоциональные состояния
  5. Влияние концентрации на скорость реакции
  6. Влияние концентрации на состав продуктов реакции
  7. ВТОРИЧНЫЕ ЛУЧЕВЫЕ РЕАКЦИИ В БИОГЕОЦЕНОЗАХ
  8. Выполнить вопросы №4, №6, №7, №8 из теста. Химические реакции.
  9. Детекция результатов реакции
  10. Зависимость скорости химической реакции от температуры процесса
  11. Закон сохранения массы веществ: Масса реагирующих веществ равна массе продуктов реакции.
  12. Используя метод стационарных концентраций, определите, каков порядок этой реакции по пероксиду водорода.

Аминокислоты содержат амино — и карбоксильную группы и проявляют все свойства, характерные для соединений с такими функциональными группами. При написании реакций аминокислот пользуются формулами с неионизированными амино- и карбоксигруппами.

1)реакции по аминогруппе. Аминогруппа в аминокислотах проявляет обычные свойства аминов : амины являются основаниями, а в реакциях выступают в роли нуклеофилов.

1. Реакция аминокислот как основания. При взаимодействии аминокислоты с кислотами образуются аммонийные соли:

2.

хлоргидрат глицина, хлороводородная соль глицина

Читайте так же:  Протеин бцаа креатин как принимать

2. Действие азотистой кислоты. При действии азотистой кислоты образуются гидроксикислоты и выделяется азот и вода:


Эту реакцию используют для количественного определения свободных аминных групп в аминокислотах, а также и в белках.

3.Образование N — ацильных производных, реакция ацилирования.

Аминокислоты реагируют с ангидридами и галогенангидридами кислот, образуя N — ацильные производные аминокислот:


бензиловый эфир натриевая соль N карбобензоксиглицин — хлормуравьиной глицина

Ацилирование — один из способов защиты аминогруппы. N-ацильные производные имеют большое значение при синтезе пептидов, так как N-ацилпроизводные легко гидролизуются с образованием свободной аминогруппы.

4.Образование оснований Шиффа. При взаимодействии a — аминокислот с альдегидами образуются замещенные имины ( основания Шиффа ) через стадию образования карбиноламинов:

α-аминокислота альдегид карбиноламин основание Шиффа

Эта реакция имеет практическое значение для количественного определения a- аминокислот методом формольного титрования. Вследствие амфотерного характера a — аминокислоты не могут быть непосредственно оттитрованы щелочью в аналитических целях. При взаимодействии a-аминокислот с формальдегидом получаются относительно устойчивые карбиноламины – N — метилольные производные, имеющие свободную карбоксильную группу, которую можно оттитровать щелочью как обычную карбоновую кислоту.

аланин формальдегид N-метилольное производное аланина

5.Реакция алкилирования. Амииногруппа в a -аминокислоте алкилируется с образованием N – алкилпроизводных:


Наибольшее значение имеет реакция с 2,4 — динитрофторбензолом. Получаемые динитрофенильные производные ( ДНФ-производные ) используются при установлении аминокислотной последовательности в пептидах и белках. Взаимодействие a- аминокислот с 2,4-динитрофторбензолом является примером реакции нуклеофильного замещения в бензольном ядре. За счет наличия в бензольном кольце двух сильных электроноакцепторных групп галоген становится подвижным и вступает в реакцию замещения:

2,4 – динитро —

фторбензол N — 2,4 — динитрофенил — a — аминокислота

(ДНФБ) ДНФ — производные a — аминокислот

6.Реакция с фенилизотиоцианатом. Эта реакция широко используется при установлении строения пептидов. Фенилизотиоцианат является производным изотиоциановой кислоты H-N=C=S. Взаимодействие a — аминокислот с фенилизотиоцианатом протекает по механизму реакции нуклеофильного присоединения. В образовавшемся продукте далее осуществляется внутримолекулярная реакция замещения, приводящая к образованию циклического замещенного амида: фенилтиогидантоин.

Циклические соединения получаются с количественным выходом и представляют собой фенильные производные тиогидантоина (ФТГ — производные) — аминокислот. ФТГ — производные различаются строением радикала R.

Фенилтиогидантоиновые производные аминокислот

(ФТГ — производные α – аминокислот)

Реакции карбоксильной группы.

a-Аминокислоты образуют с основаниями обычные соли, например:

Кроме обычных солей a- аминокислоты могут образовывать в определенных условиях внутрикомплексные соли с катионами тяжелых металлов. Для всех a — аминокислот очень характерны красиво кристаллизующиеся, интенсивно окрашенные в синий цвет внутрикомплексные (хелатные) соли меди ):

медная соль глицина

2 Образование сложных эфиров. При действии на a — аминокислоту спиртом в присутствии кислотного катализатора (газообразный HCl) образуются сложные эфиры (в виде гидрохлоридов). Для выделения свободных эфиров реакционную смесь обрабатывают газообразным аммиаком:

Этиловый эфир аланина

Образование сложных эфиров — один из методов защиты карбоксильной группы в синтезе пептидов.

3.Образование галогенангидридов. При действии на a- аминокислоты с защищенной аминогруппой оксидихлоридом серы ( тионилхлоридом ) или оксид-трихлоридом фосфора ( хлорокисью фосфора ) образуются хлорангидриды:


Получение галогенангидридов — один из способов активации карбоксильной группы в пептидном синтезе.

4.Получение ангидридов a — аминокислот. Галогенангидриды обладают очень высокой реакционной способностью, что снижает селективность реакции при их использовании. Поэтому более часто используемый способ активации карбоксильной группы в синтезе пептидов — это превращение ее в ангидридную. Ангидриды по сравнению с галогенангидридами кислот обладают меньшей активностью. При взаимодействии a- аминокислоты, имеющей защищенную аминогруппу, с этиловым эфиром хлормуравьиной кислоты(этилхлорформиатом) образуется ангидридная связь:


5. Декарбоксилирование. a — Аминокислоты, имеющие две электроноакцепторные группы при одном и том же атоме углерода, легко декарбоксилируются. В лабораторных условиях это осуществляется при нагревании аминокислот с гидроксидом бария.Эта реакция протекает в организме при участии ферментов декарбоксилаз с образованием биогенных аминов:

Качественная реакция на a- аминокислоты. В качестве специфического реактива на a- аминокислоты используется нингидрин. При нагревании его с a — аминокислотами возникает фиолетовое окрашивание разных оттенков.

нингидрин

Отношение аминокислот к нагреванию. При нагревании a- аминокислот образуются циклические амиды, называемые дикетопиперазинами:


Дикетопиперазин

b — Аминокислоты при нагревании образуют a, — b — ненасыщенные кислоты с отщеплением аммиака:

g — и d — Аминокислоты легко отщепляют воду и циклизуются с образованием внутренних амидов, лактамов:

g — лактам ( бутиролактам )

В тех случаях, когда амино — и карбоксильная группы разделены пятью и более углеродными атомами, при нагревании происходит поликонденсация с образованием полимерных полиамидных цепей с отщеплением молекулы воды.

Дата добавления: 2014-12-27 ; Просмотров: 14081 ; Нарушение авторских прав? ;

Видео удалено.
Видео (кликните для воспроизведения).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источники


  1. Ковальский, Игорь Идеальное тело. Силовые упражнения для настоящих мужчин / Игорь Ковальский. — М.: Вектор, 2010. — 112 c.

  2. Biedl Внутрення секреция, ея физиологическия основы и значение для патологии / Biedl, Artur. — М.: СПБ: Практическая медицина, 2003. — 865 c.

  3. Михаил, Родионов Диабет и гипогликемия. Помоги себе сам / Родионов Михаил. — М.: Феникс, 2008. — 214 c.
  4. Лысов, П.К. Анатомия человека. С основами спортивной морфологии. В 2 томах. Том 1. Учебник / П.К. Лысов. — М.: Академия (Academia), 2015. — 320 c.
  5. Сурина, Л.Н. Земли Тюменской травы лечебные / Л.Н. Сурина, А.А. Баранов, С.В. Сурин-Левицкий. — М.: Тюмень: Слово, 2002. — 592 c.
Для аминокислот характерны свойства
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here