Гниение аминокислот в кишечнике

Сегодня предлагаем ознакомится со статьей на тему: гниение аминокислот в кишечнике с профессиональным описанием и объяснением.

Превращения аминокислот под действием микрофлоры кишечника

Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот. В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмер-каптана, а также нетоксичных для организма соединений: спиртов, аминов, жирных кислот, кетокислот, оксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название «гниение белков в кишечнике». Так, в процессе распада серосодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH. Диаминокислоты – орнитин и лизин – подвергаются процессу декарбоксилирования с образованием аминов – путресцина и кадаверина.

Из ароматических аминокислот: фенилаланин, тирозин и триптофан – при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин). Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально. В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3′-фосфоаденозин-5′-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой (см. главу 18). По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты (см. главу 16).

Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсичных веществ, поступающих в организм извне или образующихся в кишечнике из пищевых продуктов в результате жизнедеятельности микроорганизмов.

ВСАСЫВАНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ

Всасывание L-аминокислот (но не D) — активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

  • 1. нейтральных, короткой боковой цепью (аланин, серии, треонин);
  • 2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);
  • 3. с катионными радикалами (лизин, аргинин);
  • 4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);
  • 5. иминокислот (пролин, оксипролин).

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и г-глутамильный цикл.

1. Симпорт аминокислот с Na+.

Симпортом с Nа + переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na +. Далее специфическая транслоказа переносит аминокислоту через мембрану в кровь. Обмен ионов натрия между клетками осуществляется путём первично-активного транспорта с помощью Na + , К + -АТФ-азы.

2. г-Глутамильный цикл.

г-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катионными радикалами (лизин) в кишечнике, почках и, по-видимому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные — в цитозоле. Мембранно-связанный фермент г-глутамилтрансфераза (гликопротеин) катализирует перенос г-глутамильной группы от глутатиона на транспортируемую аминокислоту и последующий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты — цистеин и глицин. В результате этих 3 реакций происходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Следующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной молекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.

Поступление аминокислот в организм осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30—50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

Читайте так же:  Сколько принимать креатин моногидрат в порошке

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Обезвреживание продуктов гниения белков в кишечнике

Аминокислоты, которые не всосались в кровь через слизистую оболочку тонкой кишки, подвергаются воздействию микроорганизмов в толстом кишечнике. При этом ферменты микроорганизмов расщепляют аминокислоты и превращают их в амины, жирные кислоты, спирты, фенолы и другие вещества, нередко ядовитые для организма.

Этот процесс иногда называют гниением белков в кишечнике. В его основе лежит декарбоксилирование аминокислот, при этом из аминокислот образуются биологические амины. Так, из аминокислоты орнитина NH2(CH2)3CH(NH2)COOH образуется путресцин H2N(CH2)4NH2 (токсическое вещество из группы полиаминов), из лизина H2N(CH2) . 4CH(NH2) . COOH образуется кадаверин NH2(CH2)5NH2 (токсическое вещество из группы птомаинов).

Путресцин и кадаверин выводятся из организма с фекальными массами. В тех случаях, когда эти соединения попадают в кровь, они выводятся с мочой в неизмененном виде.

Из тирозина OHC6H4CH2CH(NH2)COOH образуется крезол СН3С6Н4ОН (производное фенола, обладающее токсическими свойствами и специфическим неприятным запахом), а если процесс идёт дальше, то и фенол С6Н5ОН (карболовая кислота – гидроксибензол, производное бензола, токсическое вещество).

[1]

Из аминокислоты триптофана C13H10O2N2 образуются скатол NC₈H₆CH₃ (бесцветное кристаллическое вещество с очень неприятным запахом) и индол C8H7N (токсическое вещество со специфическим неприятным запахом).

При глубоком разрушении кишечными микроорганизмами серосодержащих аминокислот — цистина C6H12N2S2O4, цистеина HSCH2CH (NH2) COOH и метионина CH3SCH2CH2CH (NH2) COOH — образуется сероводород (H2S, газ с резким неприятным запахом), меркаптан (CH3SH, летучее вещество с сильным удушливым запахом) и другие серосодержащие соединения.

Продукты гниения белков всасываются в венозную кровь, затем попадают в печень, где и обезвреживаются с помощью эндогенной серной кислоты или глюкуроновой кислоты. Индол и скатол также обезвреживаются в печени при участии серной и глюкуроновой кислот. Однако они предварительно окисляются: скатол в скатоксил, индол в индоксил и в виде парных кислот выводятся из организма с мочой.

Некоторые ядовитые вещества, например, бензойная кислота C6H5COOH, образующаяся из аминокислоты фенилаланина C3H5CH2CH (NH2) COOH, обезвреживаются в печени с помощью аминокислоты глицина. При этом образуется гиппуровая кислота C6H5CONH2CH2COOH — безвредное соединение, которое выводится с мочой.

Возможности печени в обезвреживании продуктов гниения белков, образованных в толстом кишечнике и всосавшихся в кровь, не безграничны. При снижении ее функциональной способности (например, в связи с перенесенными ранее заболеваниями) поступление значительного количества ядовитых веществ может оказаться чрезмерной нагрузкой.

Тогда часть необезвреженных ядовитых веществ разносится (большим кругом кровообращения) по всему организму, вызывая его отравление. Происходит преждевременное старение клеток и их гибель. При этом отмечается ухудшение самочувствия человека, его мучают головные боли.

Для предупреждения негативного воздействия ядовитых веществ на организм необходимо рационально планировать пищевой рацион. В него должны быть включены продукты, содержащие не только белки, но и жиры и углеводы, полезные кисломолочные продукты, так как молочнокислые бактерии способствуют ускорению гибели гнилостных микроорганизмов толстой кишки. В рационе необходима пища, которая является источником пектиновых веществ и клетчатки, что, повышая двигательную активность кишечника, способствуют выведению шлаков (в том числе и ядовитых веществ) из организма.

«Обезвреживание продуктов гниения белков в кишечнике» — это вторая статья из цикла «Обмен белков в организме человека». Первая статья — « Расщепление белков в пищеварительном тракте » Третья статья « Обмен аминокислот в тканях »

Гниение аминокислот в кишечнике

Строго говоря, речь идет о разнообразных превращениях свободных аминокислот, а не белков пищи, под действием микрофлоры нижнего отдела кишечника. Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Кроме того, микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих разнообразные превращения пищевых аминокислот (окисление, восстановление, дезаминирование, декарбоксилирование, распад). Благодаря этому в кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот, в частности фенола, индола, крезола, скатола, сероводорода, метилмеркаптана, а также нетоксичных для организма ряда других соединений — спиртов, аминов, жирных кислот, кетокислот, гидроксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название гниения белков в кишечнике. Так, в процессе постепенного и глубокого распада серосодержащих аминокислот (цистина, цистеина и метионина) в кишечнике образуются сероводород (H2S) и метилмеркаптан (CH3SH). Диаминокислоты, в частности орнитин и лизин, подвергаются процессу декарбоксилирования с образованием протеиногенных аминов (их иногда называют птомаинами, или трупными ядами, поскольку они образуются также при гнилостном разложении трупов). Из орнитина образуется путресцин, а из лизина — кадаверин [показать] .

Читайте так же:  Макслер л карнитин 3000 как принимать

Оба амина легко всасываются в кровь и выделяются с мочой; следует указать, что в моче они открываются в редких случаях, в частности при холере, гастроэнтеритах, а также при наследственной цистинурии. Вероятнее всего, оба этих амина обезвреживаются уже в клетках слизистой оболочки кишечника под влиянием специфической диаминоксидазы (см. ниже).

Из ароматических аминокислот фенилаланина, тирозина и триптофана при аналогичном бактериальном декарбоксилировании образуются соответствующие биогенные амины: фенилэтиламин, парагидроксифенилэтиламин (или триптамин) и индолилэтиламин (триптамин). Помимо этого процесса, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена: соответственно крезола и фенола, скатола и индола [показать] .

После всасывания эти продукты через воротную вену попадают в печень, где они подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или скатоксилсерная кислота). Последние выделяются с мочой.

Механизм обезвреживания этих продуктов расшифрован в деталях.

В печени содержатся специфические ферменты — арилсульфотрансфераза и УДФ-глюкуронилтрансфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы — 3′-фосфоаденозин-5′-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы — уридиндифосфоглюкуроновой кислоты (УДФГК) на любой из указанных выше продуктов. Источником ФАФС являются промежуточные продукты обмена пуриновых нуклеотидов и углеводов; не исключено возможное участие рибозо-5-фосфата, который образуется в процессе пентозо-фосфатного пути окисления глюкозы. Предшественниками УДФГК в организме являются метаболиты глюкозы и УТФ. Cм. химическое строение ФАФС и УДФГК и в качестве примера механизм обезвреживания индола:

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС:

Индол связывается в виде эфиросерной кислоты, калиевая или натриевая соль которой получила название животного индикана, который выводится с мочой. По количеству индикана в моче у человека судят о скорости процессов гниений белков в кишечнике и о функциональном состоянии печени. Таким образом, определение индикана имеет большое клиническое значение.

Ряд других аминокислот также подвергается распаду под действием ферментов микроорганизмов кишечника (фенилаланин, лизин, орнитин и др.), однако образующиеся из них продукты гниения не представляют большой опасности для организма, поскольку они менее токсичны, чем указанные выше соединения.

Существенный интерес с точки зрения клиники представляет механизм обезвреживания бензойной кислоты, которая после всасывания из кишечника связывается в печени с глицином согласно уравнению:

Реакция требует доставки энергии и присутствия КоА. По скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты (проба Квика) обычно судят о функциональном состоянии печени; этот тест с успехом используется в клинической практике. Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсических продуктов, поступающих в организм извне или образующихся в кишечнике из продуктов питания благодаря жизнедеятельности микроорганизмов.

СУДЬБА ВСОСАВШИХСЯ АМИНОКИСЛОТ

Приведенная ниже схема дает представление о многообразии каналов, по которым используются аминокислоты после всасывания в кишечнике. Поступив через воротную вену в печень, они прежде всего подвергаются ряду превращений в этом органе, хотя значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей. В печени аминокислоты используются не только для синтеза собственных белков и белков плазмы крови, но также для синтеза ряда специфических азотсодержащих соединений — пуриновых и пиримидиновых нуклеотидов, креатина, мочевой кислоты, НАД и др. Печень обеспечивает, кроме того, сбалансированный пул свободных аминокислот организма путем синтеза незаменимых аминокислот и перераспределения азота в результате реакций трансаминирования

Использованию аминокислот в синтезе белка и роли в этом исключительно важном для всех живых существ процессе нуклеиновых кислот будет посвящена отдельная глава (см. Биосинтез белка). Прежде чем перейти к рассмотрению основных путей обмена аминокислот, следует остановиться вкратце на проблеме транспорта аминокислот внутрь клетки.

ТРАНСПОРТ АМИНОКИСЛОТ ЧЕРЕЗ КЛЕТОЧНЫЕ МЕМБРАНЫ

Различная скорость проникновения аминокислот через биомембраны клеток, установленная при помощи метода меченых атомов, свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос аминокислот как через внешнюю клеточную мембрану, так и через систему внутриклеточных мембран. Несмотря на тщательные исследования, проведенные в разных лабораториях, тонкие механизмы функционирования активной системы транспорта аминокислот пока не расшифрованы. А. Майстером предложена новая схема транспорта аминокислот через биомембраны, которая, по-видимому, активно функционирует в почечных канальцах, слизистой кишечника и в ряде других тканей, в частности в ткани мозга. Сущность этой гипотезы можно понять из схемы [показать] .

Предполагается, что главную роль в этом процессе играет мембранно-связанный гликопротеид — фермент γ-глутамил-транспептидаза, которая катализирует перенос γ-глутамильной группы от глутатиона или другого γ-глутамильного пептида на транспортируемую аминокислоту. Комплекс γ-глутамил — аминокислота после переноса (транслокации) через биомембрану распадается внутри клетки (или внутри субклеточного образования) под действием глутамилциклотрансферазы на свободную аминокислоту и 5-оксопролин (пироглутаминовая кислота), образование которого почти целиком сдвигает реакцию расщепления комплекса вправо. Специфичность связывания (центр узнавания) аминокислоты обусловлена молекулой самой γ-глутамилтранспептидазы благодаря существованию изоферментов. С другой стороны, предполагается, что имеются особые белки, связывающие аминокислоты, — эти белки обеспечивают доставку своих субстратов к транспептидазе. Укажем также, что благодаря легкой возможности ресинтеза глутатиона, требующего только затраты энергии АТФ, цикл может повторяться многократно. Однако, несмотря на свою оригинальность и привлекательность, схема не отвечает на ряд вопросов (включая значение Na + в активном транспорте аминокислот).

Читайте так же:  Л карнитин и жиросжигатель как принимать вместе

ПРОМЕЖУТОЧНЫЙ ОБМЕН АМИНОКИСЛОТ В ТКАНЯХ

Ранее было отмечено широкое участие природных аминокислот (точнее углеродных скелетов, колец и различных функциональных групп) в синтезе биологически активных соединений. О многообразии таких синтезов свидетельствует приведенная ниже схема:

ОБЩИЕ ПУТИ ОБМЕНА АМИНОКИСЛОТ

Несмотря на то, что почти для каждой аминокислоты выяснены индивидуальные пути обмена (см. ниже), известен ряд превращений, общих почти для всех аминокислот. К этим превращениям относятся реакции дезаминирования, трансаминирования, декарбоксилирования и рацемизации. Рассмотрим подробно три первые реакции, имеющие значение для всех живых организмов. В то же время реакции рацемизации характерны только для микроорганизмов, в которых открыты ферменты, катализнрующие рацемизацию ряда аминокислот (Ала, Глу, Про, Мет, Лиз, Сер) и эпимеризацию оксипролина и α,ε-диаминопимелиновой кислоты. Физиологическая роль рацемаз микроорганизмов сводится к синтезу ряда D-изомеров аминокислот, которые затем используются для построения клеточной оболочки.

Образовавшиеся в процессе дезаминирования и трансдезаминирования α-кетокислоты подвергаются в тканях животных различным превращениям. Прежде всего α-кетокислоты могут подвергаться восстановительному аминированию с образованием соответствующей аминокислоты. Это так называемый синтетический путь превращения. Опыты с перфузией растворов α-кетокислот и аммиака через изолированную печень показали, что в оттекающей из печени жидкости действительно открываются соответствующие исходным кетокислотам L-аминокислоты. Этот синтез протекает преимущественно по механизму трансреаминирования, т. е. при участии трансаминирования (см. выше). Доказаны, кроме того, глюкогенные, кетогенные и окислительные пути, ведущие к образованию глюкозы, жирных кислот, ацетоновых тел и компонентов цикла трикарбоновых кислот (рис.)

Углеродные скелеты аминокислот могут включаться в ЦТК через следующие соединения: ацетил-КоА (опосредованно через пируват), ЩУК, α-КГ и сукцинил-КоА непосредственно. Пять аминокислот (Фен, Лиз, Лей, Три и Тир) считаются «кетогенными», поскольку они являются предшественниками ацетоновых тел, в частности ацетоуксусной кислоты, в то время как большинство других аминокислот, обозначаемых как «глюкогенные», служат в организме источником углеводов, в частности глюкозы. Подобный синтез углеводов de novo наблюдается при некоторых патологических состояниях, например при сахарном диабете, а также при гиперфункции коры надпочечников и при введении глюкокортикоидов (см. Гормоны). Такое разделение аминокислот на кетогенные и глюкогенные имеет, однако, условный характер, поскольку из 9 углеродных атомов тирозина, например, четыре используются при синтезе ацетоуксусной кислоты, а три — при синтезе глюкозы через пируват.
Декарбоксилирование аминокислот

Судьба биогенных аминов. Накопление биогенных аминов может отрицательно сказаться на физиологическом статусе и вызывать ряд серьезных нарушений в организме. Однако органы и ткани как и целостный организм располагают специальными механизмами обезвреживания биогенных аминов, которые в общем виде сводятся к их окислительному дезаминированию с образованием соответствующих альдегидов и освобождением аммиака:

Ферменты, катализирующие эти реакции, получили названия моноамин- и диаминоксидаз. Более подробно изучен механизм окислительного дезаминирования моноаминов. Этот ферментативный процесс является необратимым и протекает в две стадии:

  1. R-CH2-NH2 + E · ФАД + Н2О —> R-CHO + NH2 + E · ФАДH2
  2. ФАДH2 + O2 —> E · ФАД + Н2О2

Видно, что в первой, анаэробной, стадии образуются альдегид, аммиак и восстановленный фермент. Последний в аэробной фазе окисляется молекулярным кислородом. Образовавшаяся перекись водорода далее распадается на воду и кислород. Моноаминоксидаза — ФАД-содержащий фермент — преимущественно локализуется в митохондриях, играет исключительно важную роль в организме, регулируя скорость биосинтеза и распада биогенных аминов. Укажем также, что некоторые ингибиторы моноаминоксидазы (ипраниазид, гармин, паргилин) нашли применение при лечении гипертонической болезни, депрессивных состояний, шизофрении и др.

Гниение аминокислот, обезвреживание продуктов гниения

Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ — это процесс распада аминокислот под действием ферментов, вырабатывающихся микрофлорой толстого отдела кишечника. Аминокислоты при гниении подвергаются следующим превращениям:

Подвергаются орнитин и лизин. ОРНИТИН в состав белков не входит, но обязательно содержится в организме.

Проукты декарбоксилирования — ПУТРЕСЦИН и КАДАВЕРИН — являются токсическими веществами. Они входят в состав трупных ядов.

Рис. Превращение орнитина и лизина

ВОССТАНОВИТЕЛЬНОЕ ДЕЗАМИНИРОВАНИЕ: (на примере аланина)

Десульфированию подвергаются серосодержащие аминокислоты (метионин, цистеин). В результате образуются сероводород, метилмеркаптан.

РАСПАД ЦИКЛИЧЕСКИХ АМИНОКИСЛОТ

При распаде тирозина, фенилаланина, триптофана образуются метан, углекислый газ, аммиак, фенол, крезол, индол.

Все эти вещества токсические. Они поступают в печень, где и происходит их обезвреживание. В печени имеется две системы, участвующие в обезвреживании этих веществ:

1. УДФГК — УРИДИНДИФОСФОГЛЮКУРОНОВАЯ К-ТА.

Видео (кликните для воспроизведения).

2. ФАФС — ФОСФОАДЕНОЗИНФОСФОСУЛЬФАТ.

Процесс обезвреживания — это процесс конъюгации токсических веществ с компонентами одной из этих систем, и образования конъюгатов, которые являются уже нетоксичными веществами.

Рис. Обезвреживание фенола, крезола, индола

ИНДОКСИЛСУЛЬФАТ нейтрализуется и превращается в натриевую или калиевую соль.

Все эти вещества выводятся из организма с мочой.

[3]

В норме реакция на индол должна быть отрицательна. При положительной реакции на индол — нарушена обезвреживающая функция печени. Положительная реакция на ИНДИКАН наблюдается при очень активном гниении белков в толстом кишечнике.

Читайте так же:  Незаменимые аминокислоты содержатся в продуктах
Предыдущий раздел Раздел верхнего уровня Следующий раздел

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8634 —

| 7425 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Всасывание аминокислот

Всасывание аминокислот представляет собой активный Na-зависимый процесс, требующий затрат энергии АТФ. Перенос отдельных аминокислот осуществляется специальными переносчиками. У детей могут всасываться не только аминокислоты, но также пептиды и низкомолекулярные белки. Это, с одной стороны обеспечивает поступление в организм ребёнка иммуноглобулинов, антител грудного молока. С другой стороны, может вызывать аллергические реакции.

Гниение белков в толстом кишечнике

Процессу гниения в толстом кишечнике под действием ферментов гнилостной микрофлоры подвергаются не полностью расщепившиеся белки и отдельные аминокислоты. При гниении белков образуется большое количество газообразных и негазообразных нередко токсичных веществ. К продуктам гниения белков относятся CO2, CH4, NH3, H2S, меркаптаны, альдегиды, кетоны, карбоновые кислоты, диамины, вещества циклической структуры.

Диамины образуются при декарбоксилировании диаминокислот лизина и орнитина

Диамины могут выводиться из кишечника или обезвреживаться в печени

При гниении белков могут образовываться токсичные циклические продукты. Гниение тирозина ведёт к появлению крезола и фенола, гниение триптофана сопровождается образованием скатола и индола.

Продукты гниения белков чрезвычайно токсичны, по системе vena porta, они поступают в печень, где подвергаются процессам обезвреживания.

1.5. Гниение аминокислот в кишечнике и обезвреживание продуктов гниения.

1.5.1. Основная масса аминокислот, образовавшихся в пищеварительном тракте в результате переваривания белков, всасывается в кровь и пополняет аминокислотный фонд организма. Определённое количество невсосавшихся аминокислот подвергается гниению в толстом кишечнике.

Гниение – превращения аминокислот, вызванные деятельностью микроорганизмов в толстом кишечнике. Усилению процессов гниения аминокислот могут способствовать:

избыточное поступление белков с пищей;

врождённые и приобретённые нарушения процесса всасывания аминокислот в кишечнике;

снижение моторной функции кишечника.

В результате гниения аминокислот образуются различные вещества, многие из которых являются токсичными для организма. Некоторые примеры продуктов гниения приводятся в таблице 2.

Таблица 2 Продукты гниения аминокислот в кишечнике.

1.5.2. Продукты гниения аминокислот являются ксенобиотиками – веществами, чужеродными для организма человека и должны быть обезврежены (инактивированы).

Обезвреживание продуктов гниения аминокислот происходит в клетках печени после поступления веществ из кишечника с кровью воротной вены. Продукты обезвреживания хорошо растворяются в воде и поэтому легко выводятся из организма. Процесс обезвреживания включает, как правило, две фазы (стадии): фазу модификации и фазу конъюгации.

1.5.3. В фазе модификации вещества вступают в реакции микросомального окисления, в результате которого образуются полярные группы —ОН или —СООН. Если такие группы уже имеются, то обезвреживание может происходить непосредственно путём конъюгации.

Реакции конъюгации заключаются в том, что к указанным группам присоединяется определённое соединение (глюкуроновая кислота, серная кислота, глицин и некоторые другие). Активной формой глюкуроновой кислоты является уридиндифосфоглюкуроновая кислота (УДФГК), активной формой серной кислоты — 3′-фосфоаденозин-5′-фосфосульфат (ФАФС). Формулы этих соединений приводятся на рисунке 1.3.

Рисунок 1.3. Активные формы глюкуроновой и серной кислот.

1.5.4. Запомните некоторые примеры реакций обезвреживания:

1) Обезвреживание фенола (реакция глюкуронидной конъюгации):

2) обезвреживание индола: а) гидроксилирование индола (фаза модификации):

б) сульфатирование индоксила (фаза конъюгации):

в) образование калиевой соли индоксилсульфата в канальцах почек:

По количеству индикана в моче можно сделать заключение о скорость процессов гниения белков в кишечнике (при усилении гниения количество индикана увеличивается) и о функциональном состоянии печени (при нарушении обезвреживающей функции количество индикана уменьшается).

3) Обезвреживание бензойной кислоты:

По скорости образования и выведения гиппуровой кислоты с мочой после введения бензойной кислоты можно судить о функциональном состоянии печени. Этот диагностический тест получил название пробы Квика и используется в клинической практике.

6. Гниение белков в толстом кишечнике. Обезвреживание продуктов гниения в печени.

Часть аминокислот не всасывается и подвергается процессам гниения с участием микрофлоры в толстом кишечнике. Продукты гниения аминокислот могут всасываться и попадают в печень, где подвергаются реакциям обезвреживания.

За счет деятельности микрофлоры толстого кишечника а/к подвергаются гниению с образованием ядовитых продуктов: при распаде серусодержащих а/к (цистина, цистеина и метионина) образуются H2S и метилмеркаптан (CH3SH). Диаминокислоты, в частности орнитин и лизин, подвергаются декарбоксилированию с образованием протеиногенных аминов (трупных ядов).

При разрушении фенилаланина, тирозина, триптофана, образуются соответствующие биогенные амины: фенилэтиламин, триптамин, серотонин. При разрушении этих же аминокислот могут образовываться крезол, фенол, скатол, индол, бензол.

Все эти вещества гидрофобны и обладают мембранотропным действием (поражают мембраны клеток печени, эритроцитов, легких). Продукты распада аминокислот поступают в печень, где подвергаются детоксикации. В печени эти продукты обезвреживаются путемконъюгации с серной или глюкуроновой кислотой с образованием нетоксичных парных кислот (фенолсерная, скатоксилсерная).

Происходит это так: в печени содержатся специфические ферменты — арилсульфотрансфераза и УДФ-глюкуронилтрансфераза, которые катализируют перенос остатка серной кислоты из ее связанной формы-ФАФС (фосфоаденозин-фосфосульфат) и остатка глюкуроновой кислоты из ее связанной формы-УДФГК (уридиндифосфоглюкуроновой кислоты) на любой из указанных выше продуктов. Продукты реакции нетоксичные так называемые парные кислоты (например, фенолсерная кислота, скатоксилсерная), выделяются с мочой.

Читайте так же:  Лучшие витамины для беременных

Диагностическое значение индикана: он характеризует содержимое кишечника. Содержание индикана увеличивается при запорах, непроходимости кишечника, при перитонитах и парезах кишечника. В этих случаях индикан появляется в крови и выделяется с мочой в повышенных количествах. Увеличение его концентрации в крови наблюдается на ранних стадиях почечной недостаточности.

Эндогенный пул аминокислот в тканях — пути формирования и утилизации.

Белки организма постоянно находятся в обороте. Оборот белка — это время синтеза и распада белка. В отличие от распада липидов и углеводов, распад белка не находится под контролем гормонов, но зависит от энергетического статуса клетки: распад осуществляется под влиянием протеаз, которые чувствительны к концентрации ионов Ca 2+ . (концентрация Ca 2+ = 10 -7 моль в клетке, 10 -3 моль вне клетки). При нарушении энергообмена Ca-зависимая АТФ-аза не работает и Ca накапливается в клетке, что приводит к активации протеаз и усиленному распаду белка (протеолизу).

Изотопными методами было установлено, что общий метаболический пул а/к на 2/3 состоит из эндогенных а/к, и на 1/3 из экзогенных. Причем исключительно важное значение имеет именно эндогенный пул; который пополняется:

1) за счет гидролиза и протеолиза старых белков;

2) за счет частичного протеолиза прогормонов и протоферментов (система комплемента);

3) за счет мутировавших дефектных белков;

4) за счет новосинтезированных заменимых а/к.

Гниение белков в кишечнике

При избыточном потреблении животных белков и ряде патологий в кишечнике возможно развитие гнилостных и бродильных процессов.

При декарбоксилировании некоторых АК образуются ядовитые амины (путрисцин, кадаверин), а также ряд нетоксичных соединений – спиртов, ЖК и др.

[2]

Процессы распада АК под действием микрофлоры кишечника называется гниением белков в кишечнике.

Одним из основных условий декарбоксилирования АК бактериями является наличие кислой среды (рН 3,5-5,5). В кишечнике же при нормальном его функционировании рН слабощелочная. В результате инвазии некоторыми патогенными бактериями возникают диспепсии, при которых рН среды кишечника подкисляется, чаще всего локально до рН 3,0-5,0. Именно в этих участках активно развиваются процессы брожения. В основе гниения белков лежат реакции декарбоксилирования и дезаминирования.

а) из лизина образуется кадаверин, из орнитина – путресцин. Е декарбоксилаза

СН2─ NH2 СН2─ NH2 СН2─ NH2 СН2-NH2
Е Е
(CH2)3 (CH2)3+ СО2 (CH2)2 (CH2)2+ СО2
CH─NH2 CH2─ NH2 CH─ NH2 CH2-NH2
кадаверин путресцин
COOH лизин COOH орнитин (диаминокарбоновая к-та)

Ядовитость кадаверина и путресцина незначительна и при всасывании в кровь они выводятся с мочой в неизменном виде.

б) При разрушении серосодержащих аминокислот (цистеин, метионин) образуется сероводород (H2S), метилмеркаптан (CH3SH) и другие соединения, содержащие серу, придающие калу неприятный запах.

в) из ароматических АК (тирозина, триптофана) образуется соответственно фенол и n–крезол, скатол и индол:

После высаливания эти продукты попадают в печень, где инактивируются путем образования неядовитых парных кислот – с серной либо глюкуроновой кислотами. Причем последняя взаимодействует с фенолом и n–крезолом, скатолом и индолом в активной форме в виде 3′-фосфоаденозин-5′-фосфосульфатом (ФАФС) и уридиндифосфоглюкуроновой кислотой. Обезвреженные продукты выводятся с мочой.

Комплекс индола и ФАФС называется животным индиканом (ЖИ)

По количеству ЖИ в моче судят по скорости гниения белков в кишечнике и функциональному состоянию печени. О состоянии печени судят и по другому показателю — пробе Квика. Это определение гиппуровой кислоты в моче, которая образуется в результате обезвреживания бензойной кислоты (продукта распада ароматических АК)

Количество веществ, образующихся из АК в результате гниения, а так же механизмы их обезвреживания не исчерпываются приведенными выше. Организм человека и животных приспособлен обезвреживать ядовитые продукты распада белков в кишечнике различными путями.

ТЕМА: ОБМЕН БЕЛКОВ II

Цель:Дать представление о механизмах обмена и обезвреживание аммиака, особенностях обмена глицина, серина, метионина, цистеина и ароматических АК.

1. Обмен и обезвреживание аммиака.

Видео (кликните для воспроизведения).

2. Механизмы обезвреживания аммиака. Орнитиновый цикл.

Источники


  1. Годар, Софи Гимнастика для лица (+ CD-ROM) / Софи Годар. — М.: Эксмо, 2012. — 393 c.

  2. Епифанов, В.А. Лечебная физическая культура / В.А. Епифанов. — М.: Медицина, 2017. — 249 c.

  3. Филлипс, Чарльз Левое и правое полушарие. 25+25 задач для всесторонней тренировки мозга / Чарльз Филлипс. — М.: Эксмо, 2011. — 485 c.
  4. Гурвич, М. М. Диетология. Полное руководство / М.М. Гурвич. — М.: Эксмо, 2013. — 592 c.
  5. Шаталова, Галина Целебное питание / Галина Шаталова. — М.: Вектор, 2011. — 416 c.
Гниение аминокислот в кишечнике
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here