Из скольких аминокислот состоит белок

Сегодня предлагаем ознакомится со статьей на тему: из скольких аминокислот состоит белок с профессиональным описанием и объяснением.

Сколько всего аминокислот, входящих в состав молекулы белка

Приветствую вас, друзья мои! Сегодня я хотела бы поговорить с вами вот на тему сколько всего аминокислот существует. И какие нужны для нашего организма? Дело в том, что многие мои подруги стали поклонницами монодиет. Я хотела бы доказать, что не от всего можно отказаться. Исключение некоторой части продуктов негативно влияет на нашу красоту.

Виды аминокислот

Белки являются незаменимыми питательными веществами в любой здоровой диете. Все белки состоят из строительных блоков, называемых аминокислотами. Это вроде кирпичиков для строительства дома. Но не все белки в своем рационе содержат аминокислоты, которые нам необходимы.

Если вы посмотрите на белок под микроскопом, он будет выглядеть в виде цепочки из аминокислот, соединенных пептидной связью. В организме человека органические кислоты играют роль кирпичиков, из которых создается и ремонтируется мышечная ткань, волосы и кожа.

Еще десятки лет назад ученые знали только три-четыре вещества. Сейчас известно, что существует более 200 органических кислот. В последние годы находят еще большее применение для аминокислотных функций. Например, кератин, содержащийся в наших волосах и ногтях помогает разработать соединение, используемое в виде биоразлагаемого пластика.

[1]

Однако для стабильной жизнедеятельности организма нужно 22 протеиногенные аминокислоты, которые разделяются по категориям:

  • заменимые – самостоятельно синтезируются в нашем организме;
  • незаменимые – поступают извне (продукты, пищевые добавки).
Незаменимые Заменимые
  • Аргинин*
  • Гистидин*
  • Изолейцин
  • Лейцин
  • Лизин
  • Метионин
  • Фенилаланин
  • Треонин
  • Триптофан
  • Валин
  • Серин
  • Тирозин
  • Аланин
  • Аспарагин
  • Аспарагиновая кислота (аспартат)
  • Цитрулин
  • Цистеин
  • Глицин
  • Глютаминовая кислота
  • Пролин
  • Серин
  • Глутамин

Эта классификация не лишена недостатков. Например, аргинин может создаваться в нашем организме, считаясь заменимой кислотой. Только с некоторыми особенностями метаболизма и в некоторых физиологических состояниях приравнивается к незаменимым.

СТАТЬИ ПО ТЕМЕ:

Также и гистидин, который синтезируется, только в не больших количествах. Поэтому его необходимо употреблять с едой.

Незаменимые

Этот вид веществ не может синтезироваться в теле человека самостоятельно. Поэтому необходимо получать их из еды. Больше всего их содержат белки животного происхождения. Если организм чувствует нехватку какого-либо элемента, то начинает потреблять из других источников. Например, из мышечной ткани. Основной упор делается на функционирование двух органов – мозга и сердца. Чаще всего — в ущерб остальным. Более подробно вы можете прочесть в моей статье про незаменимые аминокислоты для человека. Сейчас же я сделаю беглый обзор.

Только три аминокислоты (изолейцин + лейцин + валин) составляют почти 70% всех органических кислот в организме. Поэтому их значение в организме человека настолько высоко. В спортпитании есть даже специальный BCAA комплекс, содержащий эти три компонента.

Лейцин участвует в защите и восстановлении мышц, костей, кожных покровов. Благодаря ему выделяется гормон роста. Управляет уровнем сахара и помогает сжиганию жира. Содержится в бобовых, мясе, орехах, рисе (нешлифованном) и зернах пшеницы. Благодаря своей способности стимулировать синтез белка, лейцин помогает стимулировать наращивание мышечной массы и способствует жиросжиганию. Лучшие пищевые источники лейцина, включают любой белок из животных, которые, естественно, содержат все незаменимые аминокислоты.

Изолейцин существует в белках и ускоряет выработку энергии. Его очень «любят» спортсмены. После изнурительных тренировок помогает быстрой регенерации мышечной ткани. Снимает неприятный болевой синдром. Участвует в образовании гемоглобина, регулирует количество глюкозы. Источники: мясные и рыбные продукты, яйца, орехи, горох, соя. В спортивном питании содержится в BCAA концентратах.

Лизин необходим для работы иммунной системы. Его задача – синтезировать антитела, которые станут защищать организм от «вторжения» аллергенов и вирусов. Еще он контролирует процессы обновления костей и коллагена. Управляет гормонами роста. В природе находим в кисломолочных продуктах, картошке, яйцах, красном мясе, рыбке.

Фенилаланин – это основа основ для нормальной работы центральной нервной системы. Наличие альфа-аминокислоты в организме человека избавляет от приступов депрессии и хронической боли. Влияет на способность концентрироваться и запоминать. Препараты на основе вещества используются при лечении психических заболеваний и болезни Паркинсона. Улучшает работу поджелудочной железы, печени.

Метионин – это вообще серьезный «боец». Активно перерабатывает и сжигает жиры. Участвует в образовании некоторых заменимых аминокислот. Наличие элемента влияет на нашу выносливость, работоспособность. Его недостаток сразу станет заметен по ногтям и коже. Встречается в природе: мясных и рыбных продуктах, бобовых, семечках, луке, чесноке, йогурте.

Треонин содержат белки, отвечающие за все системы организма: ЦНС, иммунную, сердечнососудистую. Без него начнутся проблемы с костями и зубами. Если у вас сбалансированная диета, то дефицит не грозит. Получаем из молочки, мяса, грибов, зеленых овощей и зерна.

Триптофан — это «серьезное» вещество. Оно необходимо человеку и несет ответственность за образование серотонина. Недостаток отвратительно сказывается на сне, настроении и аппетите. Регулирует артериальное давление, функцию дыхания. Высокое содержание аминокислоты: морепродукты, красное мясо, домашняя птица, пшеница, кисломолочка.

Валин существует для восстановления поврежденных тканей и обменных процессов в мышцах. При тяжелых нагрузках оказывает стимулирующее действие. Участвует в умственной деятельности. Необходим при терапии разрушения печени и головного мозга от алкогольных, наркотических веществ. Получить можем из мяса, молочных продуктов, грибов, сои, арахиса.

Такие элементы образуются в организме человека из других элементов. Но не думайте, что они возникают сами по себе. Их присутствие в продуктах питания крайне необходимо. Итак, разбираемся, сколько всего аминокислот заменимых.

Аланин ускоряет метаболизм углеводов. Помогает выведению токсических веществ из печени. Встречается в молочке, мясе, птице, рыбных продуктах, яйцах.

Аспарагиновая кислота принимает участие в синтезе других аминокислот. Это универсальное топливо, которое улучшает обменные процессы в нашем теле. В природе встречаем элемент в тростниковом сахаре, молоке, мясе домашней птицы и говядине.

Аспарагин нужен для работы нервной системы. Находится во всех продуктах животного происхождения, а также орехах, зерне, картофеле.

Гистидин существует в белках всех органов. Он активно принимает участие в образовании кровяных телец (красных и белых). Иммунитет нуждается в этом элементе. Положительно влияет на половую функцию, увеличивая влечение. Однако запасы вещества быстро истощаются. Вот почему нужно получать его из внешних источников: мясо, зерно, молоко.

Читайте так же:  Структурные формулы изомерных аминокислот

Серин отвечает за работу головного мозга и ЦНС. Встречаем в мясомолочных продуктах, сое, пшенице, арахисе.

Цистеин несет ответственность за синтез кератина. Без него можно было бы забыть о красивых волосах, ногтях и коже. В естественном виде находим в мясе, яйцах, красном перце, луке, чесноке и брокколи.

Аргинин – одна из самых важных аминокислот в организме человека. Он «заведует» правильным функционированием суставов, мышц, кожных покровов, печени. Укрепляет иммунитет. Благодаря активным процессам, происходит быстрое сжигание жировой ткани. Часто применяется в составе пищевых добавок бодибилдерами или худеющими. В естественном виде встречается в мясомолочных продуктах, орехах, зерновых (овес, пшеница), желатине.

Глютаминовая кислота играет основную партию в работе головного и спинного мозга. Входит в добавку глутамат натрия. В аптеке продают глутаминовую кислоту. Мне ее даже гинеколог назначала. Находим эту аминокислоту в мясомолочных продуктах, яйцах, морской рыбке, морковке, помидорах, кукурузе и шпинате.

Глутамин существует в белках для создания и поддержания мышц. Используется как топливо головного мозга. Вещество необходимо человеку для выведения всякой гадости из печени. Самое неприятное, что в результате приготовления оно разрушается. Поэтому жуйте, друзья мои, петрушечку и шпинат в сыром виде.

Глицин нужен для заживления ран и переработки глюкозы в энергию. Отличными источниками станут все белковые продукты: мясо, рыба, молоко, бобы.

Пролин содержат белки, ответственные за образование коллагена. Без него начнутся проблемы с суставами. Вегетарианцы постоянно сталкиваются с нехваткой этого вещества. В природе находим в животных продуктах.

Тирозин отвечает за работу всего организма. В его «компетенции» регулировать артериальное давление, аппетит. Недостаток чреват повышенной утомляемостью. Источником станут семечки, орехи, бананы, авокадо.

Итак, мои хорошие, мы разобрались сколько всего аминокислот существует и что же это такое. Я не утверждаю, что нужно килограммами уплетать картошку или мясо. Просто не лишайте тело нужной энергии. А себя красоты. Подписывайтесь на рассылку. До встречи!

PS: думаю, вам будет интересно в каких продуктах питания содержатся аминокислоты и сколько?

Сколько различных аминокислот найдено в природе?

Интересно, сколько из них в составе животных белков, сколько — в растительных, сколько в микроорганизмах и сколько — в свободном виде, то есть не в составе белков (если такие есть).

это я «alpart117 [92]» перефразировал, это мнение я не поддерживаю. СОВСЕМ. Но поржать годно 🙂

Первый коммент пользователя il63 [93.8K] — просто OVRERKILL всех аргументов. С il63 [93.8K] я СОГЛАСЕН.

Для тех, кому лень выделять «Non-proteinogenic amino ac >

Решил посмотреть не учебники, а википедию. В статье «Аминокислоты» сказано, что в состав белков входят 20 альфа-аминокислот, кодируемых генетическим кодом. Они называются протеиногенными (дословно — «рождающие белки», белок и протеин — синонимы). К ним причисляют еще две: селеноцистеин и пирролизин. Больше ничего в этой статье не нашел. Решил посмотреть «Непротеиногенные аминокислоты». Оказывается, такая статья есть. Но в ней всего несколько строчек. Эти аминокислоты содержатся в основном в грибах и высших растениях. В разделе «На других языках» (он в статьях википедии слева внизу) включил English. И попал на большую статью «Non-proteinogenic amino acids»! Там написано, что помимо 23 протеиногенных аминокислот (из них 21 — у эукариотов), известно более 140 природных аминокислот и более тысячи их производных! Приведены такие сведения: 20 «стандартных» аминокислот, 23 — протеиногенных, более 80 образуются в больших концентрациях абиогенным путем, около 900 синтезируются естественным путем и свыше 118 встраиваются в белки генноинженерным образом. Приводятся названия и структурные формулы многих «нестандартных» аминокислот, но, конечно, далеко не всех.

Протеин и Аминокислоты. Учебно-методическое пособие

Вся тренировочная работа в зале пойдет насмарку, если недополучать белки. Без этого важнейшего питательного вещества не набрать и не сохранить «массу». В общем, ценность белков ни у кого не вызывает сомнений, однако практика показывает, что на удивленье мало культуристов-любителей разбирается в тонкостях белкового питания. Спросите любого из них, что он знает об особенностях белкового питания, и лучший ответ, который ты получишь, это то, что минимальный уровень потребления — полтора грамма на килограмм веса (или два, а может четыре?).

Так что же нам нужно знать в первую очередь? То, что на усваиваемость, а следовательно полезность белков влияют много факторов — разные виды перевариваются пищеварительной системой по-разному. Например, одни белки идут на строительство мышц, другие сгорают, обеспечивая организм энергией. Но это еще не все. От качества протеинов, от времени потребления и промежутков между приемами пищи зависит их усвоение. Итак, в науке потребления белков вопрос номер один для атлетов — выбор «правильных» продуктов. Об этом эта статья.

Если вкратце, то белок — это длинные цепи аминокислот. А что такое аминокислоты, вы знаете? Это первичные «кирпичики» животного мироздания. Образно говоря, его «атомы». В целом все просто. Вы едите животный или растительный белок в виде длиннющих «сцепок» разных аминокислот. В организме цепи распадаются, а затем освобожденные аминокислоты «скрепляются» в новую комбинацию — это и будет новый «человеческий» белок. Не надо думать, что речь идет только о мышечном белке. Ваши ногти и волосы тоже состоят из белка, а значит и им нужны аминокислоты для обновления состарившихся белковых молекул. Однако следует заметить, что большая часть съеденного вами белка и впрямь расходуется на нужды мышечной ткани. (Следует уточнить, что только часть аминокислот идет на мышечное «строительство». Из других вырабатываются энергетические энзимы. Следовательно, чем энзимов больше, тем выше энергетический потенциал мышц. Что немаловажно для спортсмена.)

Аналогично случаю с витаминами, многие аминокислоты организм умеет «производить» сам. Это защитный механизм природы, оберегающий человека в периоды голодания. Увы, речь идет только о считанных аминокислотах, самых важных для поддержания жизни. Если говорить о мышечном росте, то из 20-ти остро нужных атлету аминокислот организм способен «произвести» только половину. Остальное надо в обязательном порядке получать с пищей. Вот и выходит, что половина вашего успеха и впрямь приходится на правильное питание. Как бы фанатично вы ни занимались, без тех самых аминокислот, которые можно «усвоить» только за обеденным столом, мышцы ни за что не вырастут!

Читайте так же:  Заменимые и незаменимые аминокислоты биохимия

Если точно по науке, то всего таких аминокислот девять: лизин, триптофан, метионин, валин, фенилаланин, лейцин, изолейцин, треонин и аргинин.

Ну как? Теперь вы понимаете, сколько подводных камней в атлетическом питании? Ведь на свете попросту нет какого-то одного продукта, который бы содержал всю нужную вам «девятку». Получается, вам нужны самые разные виды животных и растительных протеинов? Напрашивается вопрос, да как же во всем этом разобраться?!

Эх, ребята, если бы думать надо было только о составе аминокислот! А еще важен их баланс, т.е. каких-то аминокислот должно быть больше, каких-то меньше. А еще важно качество белка. (Есть белок, который усваивается из рук вон плохо.) Ученые, чтобы не запутаться, выдумали целую шкалу критериев. Вот они:

Кстати говоря, яйца и молоко — для спортсмена источники протеинов высшего качества, за ними следуют рыба и говядина, затем птица, свинина и некоторые растительные продукты. Нельзя забывать, что, хотя мясо и содержит большое количество белка, в нем также много вредных жиров (исключение — мясо цыпленка со снятой кожей). А вот рыба — просто идеальна; кроме белков, она содержит очень полезные жирные кислоты омега-3 (правда, в некоторых сортах рыбы их практически нет).

Растительная пища, как правило, содержит лишь некоторые «атлетические» аминокислоты: лизин, метионин, триптофан и треонин. И то в незначительных количествах. Например, фасоль и другие, бобовые небогаты метионином (на заметку культуристам вегетарианцам!). Значит, ценность растительных белков невелика? Ни в коем случае! Например, многие бобовые обладают великолепно сбалансированным набором аминокислот, хотя еще совсем недавно их пищевая ценность ставилось учеными под вопрос. Вообще-то растительные белки особенно полезны в комбинации друг с другом. Например, чашку вареной фасоли полезно заесть большим куском хлеба грубого помола.

Пора познакомится еще с одним показателем ценности белковых продуктов, биологической доступностью. Он отражает то количество питательных веществ, которые организм способен извлечь из полученной пищи и использовать в своих нуждах. Вот пример. Одно дело отборная говядина, и совсем другое — старая, с обилием хрящевой и соединительной ткани. Конечно же, и хрящи содержат аминокислоты, однако переваривает хрящи наш кишечник с большим трудом. Так что, большая часть аминокислот так и останется вне переваренной хрящевой ткани и будет выведена из организма.

А что случится, если в вашем рационе хронически недостает одной или нескольких незаменимых аминокислот? В этом случае ВЕСЬ белок, который вы съедаете, будет хуже усваиваться? Однозначно нет! Как раз на такой случай наш организм содержит примерно 450 г белковых излишков, никак не задействованных в активных биохимических процессах. Хранилище «запасных» протеинов — печень и кровь. Благодаря белковым резервам, нам не надо получать все девять незаменимых аминокислот с каждым приемом пищи. Например, организм может вполне безболезненно ждать поступление одной или нескольких дефицитных аминокислот в течение целых суток.

Существует мнение, что баланс аминокислот куда важнее их общего количества. На первый взгляд это кажется полной чепухой. В самом деле, ну не может горстка какого-то продукта, пусть и идеально сбалансированного по аминокислотному составу, заменить гору пищи, обычно поедаемую качком. Однако вот вам конкретный пример: вегетарианец Джим Моррисон. Это профессиональный культурист с огромной мышечной массой, по убеждению противник заклания и поедания животных. Можно было бы подумать, что для мышечного роста ему приходится съедать огромные количества растительной пищи. Но нет, Моррисон всегда довольствовался малыми порциями, но! идеально сбалансированными по составу аминокислотами. В частности, примером такого «идеального» блюда является комбинация обезжиренной муки из земляных орехов и коричневого риса.

Эффективность аминокислот в организме определяется, как считают ученые, не только их ценностью, доступностью и сбалансированностью, но и временем усвоения. Например, сывороточный протеин вызывает быструю, кратковременную концентрацию аминокислот в крови. Почему? Потому что сыворотка хорошо растворяется и переваривается, быстро уходит в кишечник, следовательно, энзимам легко расщепить ее на отдельные аминокислоты. С казеином — картина другая. Этот плотный продукт, задерживаясь в желудке, переваривается постепенно, и соответственно аминокислоты медленно концентрируются в крови. Значит, казеин бесполезен? Нет, просто если сыворотка действует практически мгновенно, то казеин — протеин замедленного действия.

В одном из научных экспериментов испытуемым, набранным из здоровых молодых мужчин в возрасте двадцати четырех лет, не занимающихся спортом, давали либо молочную сыворотку, либо казеин. В первой группе сразу же после приема сыворотки синтез белка кратковременно возрос на 68%. При этом некоторое количество аминокислот окислилось в ходе энергетических процессов. Проще говоря, организм «сжег» их ради извлечения энергии. Во второй группе рост синтеза белка едва достиг 31%, зато окислялось куда меньше аминокислот. В итоге в абсолютном пересчете из одинакового количества белка больше усвоилось казеина, чем сыворотки.

Какой вывод можно сделать из этого исследования? Если вам нужно быстро в течение часа «подхлестнуть» синтез белка, тогда ваш выбор — сывороточный протеин (правда, напомним, его действие ограничивается двумя-тремя часами). Растянуть усвоение белка можно с помощью казеина.

Аминокислотный состав белков

Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Видео (кликните для воспроизведения).

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

Читайте так же:  Л карнитин 2000 жидкий как принимать

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот;неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называютпростыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называютпептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованиюполипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8238 —

| 7894 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

[2]

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Сколько существует аминокислот

Содержание:

Слово «аминокислоты» наверняка знакомо каждому, кто открывал учебник биологии и химии. Они представляют собой органические соединения, входящие в состав белков в клетках организма человека, являясь их основой. Белок — строительный материал для всего живого, поэтому значение аминокислот крайне важно.

Задача аминокислот

Основная функция аминокислот в клетке — участие в синтезе белка. Организм устроен так, что старые клетки отмирают и постоянно нужны новые. Поэтому синтез должен происходить регулярно. Он устроен следующим образом: молекулы аминокислот соединяются друг с другом через пептидные связи в определенной последовательности. Помимо этого они выполняют такие задачи:

  • обогащение клеток энергией для тканей мышц;
  • обеспечение работы нервной системы (в качестве нейромедиаторов);
  • участие в водно-солевом обмене;
  • участие в образовании гормонов.

Какие бывают аминокислоты

На данный момент учеными открыто 26 соединений, считающихся аминокислотами. Из них 20 непосредственно участвуют в образовании белка в живых организмах. Принято подразделять их на две группы:

Ниже будут перечислены основные аминокислоты.

Группа незаменимых аминокислот

Это кислоты, которые не могут вырабатываться в организме человека и должны поступать в него вместе с белковой пищей:

  • гистидин. Это одна из ключевых аминокислот, участвующих в кроветворении и необходимая для гемоглобина (белок, переносящий клеткам кислород), способствует правильному росту и регенерации тканей, необходима для нормального функционирования слуха. Часто применяется для лечения анемии, язв и артритов. Среди продуктов с относительно высоким содержанием гистидина — молоко, мясо и злаковые;
  • метионин. Эта важная кислота контролирует уровень холестерина в организме человека, очищая сосудистые стенки от его наслаивания, стабилизирует работу печени, ответственную за фильтрацию вредных веществ, помогает синтезировать гормон адреналин из надпочечников. Метионин содержится в яичном белке, кунжутном семени, муке, пшеничных ростках, овсе, бразильском орехе, миндале и арахисе, курице, рисе, капусте и бобовых;
  • треонин. Это вещество принимает участие в синтезировании коллагена и эластина — основных структурных белков кожи, отвечающих за ее упругость, здоровый вид и сияние. Оно стимулирует иммунитет и участвует в работе нервных клеток, помогает функционировать сосудам и печени и мешая ей получать избыточное количество жиров, кроме того, является иммуностимулятором и основным строительным элементом для твердой зубной и соединительной ткани, заполняющей пространство между соседними внутренними органами (кстати именно поэтому эта аминокислота так необходима при реабилитации после травм и оперативных вмешательств). Содержится в яйцах, икре, сыре, соевом зерне, рыбе, курице, твороге, бобовых, кешью, фисташках, миндале, кунжуте, пшеничной и ржаной обдирной муке;
  • изолейцин. Эта аминокислота — непосредственный участник энергетического обмена в организме, влияющий, в том числе, на синтез гемоглобина и отвечающий за общее самочувствие. Ее недостаток может вызвать усталость и упадок сил; еще одна задача данного вещества — способствовать усвоению глюкозы тканью, из которой состоят все мышцы. Важно то, что прямым «спутником» изолейцина является витамин B, без которого он не будет усваиваться в должном объеме. Кислота содержится в сыре, яйце, молоке, орехах, нежирном твороге, рыбе и морепродуктах, курице и свинине, кукурузной и перловой крупе, гречихе, пшеничной и ржаной муке, горохе, чечевице, сое, абрикосе, базилике, бананах, баклажанах, цветной и белокочанной капусте, картофеле, сладком перце, моркови и огурцах;
  • лейцин. Напоминающая по составу изолейцин, эта кислота активизирует синтез мышечного белка, стимулирует обмен глюкозы в организме, улучшает питание мышц и предотвращает откладывание жира. Является одной из наиболее важных аминокислот для людей с высокими физическими нагрузками, используется в медицине для лечения заболеваний печени и анемий. В большом количестве содержится в курином яйце, красной зернистой икре, кальмаре, морском окуне, нежирной сельди, скумбрии, фисташках, арахисе, мясе индейки, шлифованном пшене, чечевице и твороге;
  • лизин. Данное вещество необходимо для роста и восстановления тканей — костных, хрящевых, мышечных и соединительных, поэтому от его наличия зависит состояние опорно-двигательного аппарата, эластичность сосудов, связок и кожи (благодаря синтезу коллагена). Содержится в молоке, твороге, брынзе, йогуртах, перепелином яйце, баранине, фасоли, горохе, индейке, курице, треске и сардине;
  • фенилаланин. Данное вещество незаменимо для построения сложных белков и их стабилизации, участвует в производстве гормона дофамина, регулирующего настроение: его нехватка вызывает эмоциональный дискомфорт и подавленность (по этой причине соединения фенилаланина входят в состав некоторых антидепрессантов). В то же время избыток кислоты может вызывать дисбаланс и угнетающе сказываться на работе нервной системы. Среди натуральных продуктов, в которых он содержится, — соевый белок, сыры твердых сортов, говядина, птица, тунец, молочные продукты, фасоль и зерновые, также фенилаланин часто входит в число ингредиентов и спортивных добавок, подавляющих аппетит и усиливающих жиросжигание;
  • триптофан. Это вещество вместе с витамином B6 и магнием способно преобразовываться в гормон серотонин, также регулирующее психологический комфорт, когнитивные функции и настроение, а также в мелатонин, отвечающий за нормализацию суточных циклов сна и бодрствования (в том числе, облегчающий засыпание, увеличивающий фазу глубокого сна и его качество в целом). Триптофан широко применяют в составе препаратов для лечения деприваций сна, депрессивных расстройств и неврозов. Вещество содержится в молочных продуктах, рыбе, птице, мясе, крупах, фасоли, орехах, винограде, помидоре, брюкве, баклажанах, болгарском перце, репчатом луке, банане и клубнике;
  • валин. Эта аминокислота участвует в белковом синтезе в мышечных клетках, обеспечивая их энергией, защищает оболочки уязвимых нервных клеток, улучшая мозговые процессы, — координацию, память и мышление, препятствует снижению уровня серотонина в крови и возникновению депрессивных состояний. Избыток валина также может вызвать сбои в работе периферической нервной системы и затруднить работу печени, почек и желудочно-кишечного тракта. Содержится вещество в зерновых культурах, бобовых растениях, курином мясе, диком буром рисе, рыбе, овсе, куриных и перепелиных яйцах, желудях, грецких орехах, фундуке, кешью и семенах подсолнечника.
Читайте так же:  Как работает креатин моногидрат

Группа заменимых аминокислот

Они поступают в человеческий организм с белковой пищей или создаются из других аминокислот. В их число входят:

  • аланин. На эту аминокислоту возложена важная функция — налаживать азотистый баланс в организме, очищая его от аммиака при высоких физических нагрузках и поддерживать углеводный обмен — ровное количество глюкозы в крови между приемами пищи (выступает как сырье для образования сахара), борьбу с накоплением гликогена в печени, а также расслаблять гладкую мускулатуру, укреплять иммунную систему, участвовать в создании мышечной ткани и нервных волокон. Среди источников аланина — желатин, свинина и говядина, соя, сыры, бобы, пивные дрожжи и птица;
  • глицин. Это один из главных нейромедиаторов организма, регулирующий процессы нервной системы, способный уменьшать уровень напряжения и стресса, а также повышать умственную работоспособность, успокаивать, благотворно влиять на сон и снижать опасное воздействие алкогольных напитков. Помимо одноименных таблеток-добавок, содержится в рыбе, мясе, сыре, молочных продуктах, шпинате, капусте, корне лопуха, тыквенных и кунжутных семенах;
  • аргинин. Важнейшая способность этой аминокислоты — образование окиси азота, благодаря чему обеспечивается тонус сосудов и хорошее кровоснабжение, а также налаживается получение клетками полезных микроэлементов. Принимает участие в образовании гормона роста. Содержится в сое, арахисе, фундуке, баранине, твороге, рыбе и яйцах;
  • аспарагин. Эта кислота находится в нервных клетках, отвечая за нормальную передачу импульсов, концентрацию внимания и обучаемость, устраняет усталость, участвует в транспортировке магния и калия клеткам для построения ДНК, синтезирует антитела для укрепления иммунитета. Также необходима для образования в организме других аминокислот — метионина и изолейцина. Ее содержанием богаты кокосы, спаржа, соя, арахис, картофель, говядина и помидоры;
  • цистеин. Роль этого вещества состоит в защите от повреждений клеток и старения, т.е. оно выступает антиоксидантом, укрепляет соединительную ткань, регенерирует поврежденные зоны, а также восстанавливает функцию белых кровяных телец. Содержится в лососе, курице, свинине, коровьем молоке, чесноке, брокколи, брюссельской капусте, красном перце, неочищенном рисе и кукурузной муке;
  • глутаминовая кислота. Данное соединение является хорошим нейромедиатором, ответственным за нормальную работу нервных клеток и окончаний, обезвреживает и выводит из организма аммиак, а также насыщает организм энергией и опосредованно участвует в синтезе гормона серотонина, т.е. регулирует настроение. В натуральном виде содержится в морепродуктах и грибах, рыбе, сухофруктах, специях, твердых сырах и соевом соусе;
  • пролин. Это вещество отвечает за синтез коллагена, а значит, за состояние соединительной ткани внутренних органов и кожи, помогая им восстанавливаться и обновляться, обеспечивает нормальное кровообращение. Содержание пролина высоко в рисе, ржаном хлебе, овсяном печенье и овсе, говядине, кальмарах, осьминогах и мясе пресмыкающихся;
  • серин. Соединение участвует в энергетическом обмене, поставляя клеткам энергию, а также образовании мембран клеток и белка кератина, из которого строится мышечная ткань. Может вырабатываться из глицина, однако для этого организм нуждается в витаминах группы B и фолиевой кислоте. Содержится в каштанах, тыквенных семенах, кокосе, орехах, сахарной и воздушной кукурузе, яйцах, сое и морской рыбе;
  • таурин. Это вещество поддерживает жировой обмен в организме, обеспечивает регенерацию клеток и участвует в передаче нервных импульсов, поэтому отвечает и за скелетные мышцы, и за сердечную и сосудистую ткань, и за почки, и за сетчатку глаз. Может синтезироваться из метионина и цистеина и содержится в рыбе, крабах, мидиях, куриных яйцах, твороге, свинине, говядине и мясе кролика;
  • тирозин. Кислота участвует в образовании гормонов адреналина, дофамина и кожного пигмента меланина, обеспечивая нормальное состояние психики и нервной системы. Содержится в соевых бобах, авокадо, морепродуктах, сырах, овсянке, бананах, мясе, миндале, пшенице, яйцах и рыбе.

Как видно из приведенных выше списков, аминокислоты являются жизненно важными питательными и строительными элементами для организма, от выработки и поступления которых зависит его общее благополучие. Поэтому важно соблюдать режим питания, включая в свой рацион натуральные продукты, богатые аминокислотами.

Дашков Максим Леонидович, репетитор по биологии в Минске

Качественная подготовка к централизованному тестированию, к поступлению в лицей

+375 29 751-37-35 (МТС) +375 44 761-37-35 (Velcom|A1)

Поделиться с друзьями

Главное меню

Для учащихся и учителей

Консультация репетитора

Поиск по сайту

1. Какие вещества являются биологическими полимерами? Какие вещества являются мономерами для построения молекул биополимеров?

а) Аминокислоты;

б) нуклеиновые кислоты;

в) полисахариды;

г) нуклеотиды;

д) белки;

е) моносахариды.

[3]

Биологическими полимерами являются: б) нуклеиновые кислоты; в) полисахариды; д) белки.

Мономерами для построения молекул биополимеров являются: а) аминокислоты; г) нуклеотиды; е) моносахариды.

Читайте так же:  Жиросжигатели для похудения мужчин спортивное питание

2. Какие функциональные группы характерны для всех аминокислот? Какими свойствами обладают эти группы?

Для всех аминокислот характерно наличие аминогруппы (–NH2), обладающей основными свойствами, и карбоксильной группы (–СООН) с кислотными свойствами.

3. Сколько аминокислот участвует в образовании природных белков? Назовите общие черты строения этих аминокислот. Чем они различаются?

В образовании природных белков участвуют 20 аминокислот. Такие аминокислоты называются белокобразующими. В их молекулах карбоксильная группа и аминогруппа связаны с одним и тем же атомом углерода. По этому признаку белокобразующие аминокислоты сходны между собой.

Белокобразующие аминокислоты различаются составом и строением боковой группы (радикала). Она может быть неполярной или полярной (нейтральной, кислой, основной), гидрофобной или гидрофильной, что и придаёт каждой аминокислоте особые свойства.

4. Каким образом аминокислоты соединяются в полипептидную цепь? Постройте дипептид и трипептид. Для выполнения задания используйте структурные формулы аминокислот, показанные на рисунке 6.

Аминогруппа (–NH2) одной аминокислоты способна взаимодействовать с карбоксильной группой (–СООН) другой аминокислоты. При этом выделяется молекула воды, а между атомом азота аминогруппы и атомом углерода карбоксильной группы возникает пептидная связь. Образующаяся молекула представляет собой дипептид, на одном конце молекулы которого находится свободная аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.

Структурную формулу дипептида (например, Ала–Глу) можно представить следующим образом:

Структурную формулу трипептида (например, Глу–Ала–Лиз) можно представить следующим образом:

5. Охарактеризуйте уровни структурной организации белков. Какие химические связи обусловливают различные уровни структурной организации белковых молекул?

Молекулы белков могут принимать различные пространственные формы, которые представляют собой четыре уровня их структурной организации.

Цепочка (линейная последовательность) аминокислотных остатков, соединённых пептидными связями, представляет собой первичную структуру белковой молекулы. Каждый белок организма имеет уникальную первичную структуру. На основе первичной структуры создаются другие виды структур, поэтому именно первичная структура определяет форму, свойства и функции белка.

Вторичная структура возникает в результате образования водородных связей между атомами водорода NH-групп и атомами кислорода CO-групп разных аминокислотных остатков полипептидной цепи.

Третичная структура формируется за счёт образования водородных, ионных, дисульфидных (S–S связей между остатками аминокислоты цистеина) и других связей, возникающих между разными группами атомов белковой молекулы в водной среде. При этом полипептидная спираль укладывается в своеобразный клубок (глобулу) таким образом, что гидрофобные аминокислотные радикалы погружаются внутрь глобулы, а гидрофильные располагаются на поверхности и взаимодействуют с молекулами воды.

В состав молекул некоторых белков входит не один, а несколько полипептидов, образующих единый комплекс. Так формируется четвертичная структура. Полипептиды не связываются ковалентными связями, прочность четвертичной структуры обеспечивается взаимодействием слабых межмолекулярных сил.

Таким образом, первичная структура белковой молекулы обусловлена наличием пептидных связей между остатками аминокислот. Вторичную структуру стабилизируют водородные связи, третичную – водородные, ионные, дисульфидные и др., четвертичную – слабые межмолекулярные взаимодействия.

6. Человек и животные получают аминокислоты из пищи. Из чего могут синтезироваться аминокислоты у растений?

Растения – автотрофные организмы. Они синтезируют аминокислоты из первичных продуктов фотосинтеза (которые, в свою очередь, образуются из углекислого газа и воды) и азотсодержащих неорганических соединений (ионов аммония, нитрат-ионов). Таким образом, у растений исходными веществами для синтеза аминокислот являются СО2, Н2О, NH4 + (NH3), NO3 – .

7. Сколько разных трипептидов можно построить из трёх молекул аминокислот (например, аланина, лизина и глутаминовой кислоты), если каждую аминокислоту можно использовать только один раз? Будут ли эти пептиды обладать одинаковыми свойствами?

Можно построить шесть трипептидов: Ала–Лиз–Глу, Ала–Глу–Лиз, Лиз–Ала–Глу, Лиз–Глу–Ала, Глу–Ала–Лиз и Глу–Лиз–Ала. Все полученные пептиды будут обладать разными свойствами.

8. Для разделения смеси белков на компоненты используется метод электрофореза: в электрическом поле отдельные белковые молекулы с определённой скоростью перемещаются к одному из электродов. При этом одни белки двигаются в сторону катода, другие перемещаются к аноду. Как строение молекулы белка связано с его способностью двигаться в электрическом поле? От чего зависит направление движения белковых молекул? От чего зависит их скорость?

В водных растворах радикалы кислых аминокислот, входящих в состав белка, заряжены отрицательно вследствие диссоциации карбоксильных групп:

Радикалы основных аминокислот имеют положительный заряд за счёт присоединения ионов водорода (Н + ) к атомам азота, входящим в состав этих радикалов:

Карбоксильная группа и аминогруппа, находящиеся на концах полипептидной цепи, также приобретают заряд (отрицательный и положительный соответственно). Таким образом, в растворе белковая молекула имеет определённый суммарный заряд, что и обусловливает её движение в электрическом поле.

Заряд молекулы белка зависит от соотношения остатков кислых и основных аминокислот. Если в составе белка преобладают остатки кислых аминокислот, то суммарный заряд молекулы будет отрицательным и она будет перемещаться к аноду (положительно заряженному электроду). Если же преобладают остатки основных аминокислот, то суммарный заряд молекулы будет положительным, и белок будет двигаться в сторону катода (отрицательно заряженного электрода).

Видео (кликните для воспроизведения).

Скорость движения зависит прежде всего от величины заряда белковой молекулы, её массы и пространственной конфигурации.

Источники


  1. Галли, Андреа Вкусные рецепты для стройности и настроения / Андреа Галли , Ольга Никишичева. — М.: Эксмо, 2013. — 192 c.

  2. Дальке, Рудигер Здоровое питание. Энергетические свойства слов. Ты свободен (комплект из 3 книг) / Рудигер Дальке , Курт Абрахам , Клаус Штюбен. — М.: Амрита, ИГ «Весь», 2012. — 816 c.

  3. Сидоровнин, Г.П. Восточная гимнастика / Г.П. Сидоровнин. — М.: Саратов: Приволжское, 1991. — 272 c.
  4. Петров, В.В. 4 группы крови: питание и борьба со стрессом / В.В. Петров. — М.: Харвест, 2003. — 352 c.
  5. Мазнев, Н. Все о лечебном питании. Витамины. Минералы. Соли / Н. Мазнев. — М.: Рипол Классик, Дом. XXI век, 2007. — 132 c.
Из скольких аминокислот состоит белок
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here