Классификация аминокислот по радикалу

Сегодня предлагаем ознакомится со статьей на тему: классификация аминокислот по радикалу с профессиональным описанием и объяснением.

Классификация аминокислот по полярности радикалов

1. Неполярные аминокислоты (аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин). Эти аминокислоты гидрофобны. Имеют незаряженный радикал. При сближении в пространстве радикалы этих аминокислот обеспечивают гидрофобное взаимодействие.

2. Полярные, гидрофильные, незаряженные аминокислоты (глицин, треонин, цистеин, тирозин, серин, аспарагин, глутамин). Содержат такие полярные функциональные группы как гидроксильная, сульфгидрильная и амидогруппа. При сближении в пространстве радикалы этих аминокислот образуют водородные связи. Связанные дисульфидной связью два остатка цистеина называют цистином.

3. Кислые аминокислоты (отрицательно заряженные аминокислоты) имеют отрицательный заряд (аспарагиновая и глутаминовая кислоты) при рН 7,0

4. Основные аминокислоты (положительно заряженные аминокислоты) имеют положительный заряд при рН 7,0.

Радикалы аминокислот 3 и 4 групп участвуют в образовании ионных связей.

Аминокислоты классифицируются на заменимые и незаменимые (эссенциальные).

1. Незаменимые (эссенциальные) аминокислоты не могут синтезироваться в организме и должны поступать с пищей. Они необходимы для обеспечения и поддержания роста: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин (шесть аминокислот 1-й группы, одна – второй и три – четвертой).

2. Заменимые аминокислоты. Организм может синтезировать около 10 аминокислот для обеспечения биологических потребностей, поэтому поступление их с пищей не обязательно (аланин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин, тирозин).

Аминокислоты, связанные пептидной связью, образуют полипептидную цепь и каждая аминокислота в ней называется аминокислотный остаток. В полипептиде выделяют N-конец (терминальная альфа-аминогруппа) и С-конец (терминальная альфа-карбоксильная группа). Большинство природных полипептидных цепей, содержащих от 50 до 2000 аминокислотных остатков, называют белками (протеинами). Полипептидные цепи меньшей длины называют олигопептидами или просто пептидами. В некоторых белках полипептидные цепи связываются поперечными дисульфидными связями, образованными окислением двух остатков цистеина. Внеклеточные белки часто содержат дисульфидные связи, а внутриклеточные белки часто утрачивают их. В некоторых белках образуются поперечные связи при взаимодействии радикалов других аминокислотных остатков (коллаген, фибрин).

Дата добавления: 2016-11-12 ; просмотров: 4394 | Нарушение авторских прав

Аминокислоты

аминокислота бензольный пептид

Аминокислотами называют бифункциональные производные углеводородов, которые содержат карбоксильную группу COOH и аминогруппу NH2.

По систематической номенклатуре аминокислоты называют, по соответствующей карбоновой кислоте добавляя приставку амино-. Положение аминогруппы в углеродной цепи указывают цифрой:

Подробнее номенклатурные правила для названий аминокислот изложены в пособии Левина И.Ю., Берлянд А.С. «Номенклатура, классификация и электронное строение химических связей в органических соединениях».

В зависимости от положения аминогруппы по отношению к карбоксильной группе различают б, в, г и так далее аминокислоты:

Все природные аминокислоты содержат аминогруппу только в б-положении и имеют общую формулу:

Помимо систематической, для природных аминокислот широко распространена тривиальная номенклатура (аланин, валин, лизин и т.д.). Иногда запись аминокислот осуществляют, используя трехбуквенные сокращения (Ala, Val, Lys и др.).

Классификация аминокислот

В настоящее время единой классификации аминокислот не существует.

Аминокислоты делят на природные (содержатся в растительных и животных организмах) и синтетические — получены икусственным путем.

Организм синтезирует аминокислоты главным образом из пищевых белков. Но есть целая группа аминокислот, которых организм сам синтезировать не может. Эти аминокислоты называют незаменимыми. К ним относятся (валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин и триптофан) Такие аминокислоты должны поступать в организм извне. В настоящее время известно свыше 150 аминокислот, но только 20 из них входят в состав белков.

По природе радикала аминокислоты делят на:

Строение радикала кислоты R

Строение радикала кислоты R

Строение радикала кислоты R

4. Аминокислоты, содержащие в радикале дополнительную аминогруппу или гуанидильный остаток.

Строение радикала кислоты R

Аргинин (содержит гунидиновую группу)

5. Аминокислоты, которые содержат в радикале дополнительную карбоксильную или амидную группы:

Строение радикала кислоты R

6. Ароматические и гетероциклические аминокислоты:

Строение радикала кислоты R

Пролин (полная форма)

Современная рациональная классификация основана на полярности радикалов. Полярность радикала во многом определяет такое важное свойство аминокислот как растворимость в воде и в других полярных растворителях. Полярные группы радикала (COOH, NH2, OH и др.) притягивают воду и тем самым повышают растворимость аминокислот в воде, неполярные радикалы, наоборот, отталкивают воду и снижают растворимость аминокислот в воде.

В этой связи различают:

1. Аминокислоты с неполярными (гидрофобными) радикалами.

[3]

К ним относятся гидрофобные радикалы аланина, валина, лейцина, изолейцина, пролина, метионина, фенилаланина и триптофана. Радикалы этих аминокислот воду не притягивают, а стремятся друг к другу или к другим гидрофобным молекулам.

2. Аминокислоты с полярными (гидрофильными) радикалами.

К ним относятся серин, треонин, тирозин, аспарагин, глутамин и цистеин. В состав радикалов этих аминокислот входят полярные функциональные группы, образующие водородные связи с водой.

В свою очередь, эти аминокислоты делят на две группы:

Читайте так же:  Спортивное питание для похудения для мужчин

1) способные к ионизации в условиях организма (ионогенные).

Например, при рН = 7 фенольная гидроксильная группа тирозина ионизирована на 0,01%; тиольная группа цистеина на 8%.

2) не способные к ионизации (неионогенные).

Например, гидроксильная группа треонина:

3. Аминокислоты с отрицательно заряженными радикалами.

К этой группе относят аспарагиновую и глутаминовую кислоты. Эти аминокислоты называют кислыми, так как они содержат дополнительную карбоксильную группу в радикале, которая диссоциирует с образованием карбоксилат-аниона. Полностью ионизированные формы этих кислот называют аспартатом и глутаматом:

К этой же группе иногда относят аминокислоты аспарагин и глутамин, содержащие карбоксамидную группу (СОNH2), как потенциальную карбоксильную группу, возникающую в процессе гидролиза.

Величины рKa в-карбоксильной группы аспарагиновой кислоты и г-карбоксильной группы глутаминовой кислоты выше по сравнению с рKa б-карбоксильных групп и в большей степени соответствуют значениям рKa карбоновых кислот.

4. Аминокислоты с положительно заряженными радикалами

К ним относят лизин, аргинин и гистидин. У лизина есть вторая аминогруппа, способная присоединять протон:

У аргинина положительный заряд приобретает гуанидиновая группа:

Один из атомов азота в имидазольном кольце гистидина содержит неподеленную пару электронов, которая также может присоединять протон:

Эти аминокислоты называют оснувными.

Отдельно рассматриваются модифицированные аминокислоты, содержащие в радикале дополнительные функциональные группы: гидроксилизин, гидроксипролин, г-карбоксиглутаминовая кислота и др. Эти аминокислоты могут входить в состав белков, однако модификация аминокислотных остатков осуществляется уже в составе белков, т.е. только после окончания их синтеза.

Аминокислоты объединяют в несколько классов

Аминокислоты – это строительные блоки макромолекул белков. По строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу. Таким образом, в аминокислотах обязательно присутствует карбоксильная группа (СООН),аминогруппа (NH2), асимметричный атом углерода и боковая цепь (радикал R). Строением боковой цепи аминокислоты и отличаются друг от друга. Именно радикал придает аминокислотам большое разнообразие строения и свойств.

Классификация аминокислот

Классификация аминокислот может проводиться в зависимости от какого-либо свойства или качества аминокислот. Выделяют следующие классы аминокислот:

1. В зависимости от положения аминогруппы по отношению к С 2 (α-углеродный атом) на α-аминокислоты, β-аминокислоты и др.

2. По абсолютной конфигурации молекулы на L- и D-стереоизомеры.

3. По оптической активности в отношении плоскости поляризованного света – на право- и левовращающие.

4. По участию аминокислот в синтезе белков – протеиногенные и непротеиногенные.

5. По строению бокового радикала – ароматические, алифатические, содержащие дополнительные СООН- и NH2-группы.

6. По кислотно-основным свойствам – нейтральные, кислые, основные.

7. По необходимости для организма – заменимые и незаменимые.

Двадцать аминокислот необходимы для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот.

Все протеиногенные аминокислоты являются α-аминокислотами. На их примере можно показать дополнительные способы классификации. Названия аминокислот обычно сокращаются до 3-х буквенного обозначения. Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

По строению бокового радикала

· алифатические(аланин, валин, лейцин, изолейцин, пролин, глицин),

· ароматические(фенилаланин, тирозин, триптофан),

· серусодержащие(цистеин, метионин),

· содержащие ОН-группу (серин, треонин, опять тирозин),

· содержащие дополнительную СООН-группу (аспарагиновая и глутаминоваякислоты),

· дополнительную NH2-группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

Строение протеиногенных аминокислот

По полярности бокового радикала

Существуют неполярныеаминокислоты (ароматические, алифатические) и полярные(незаряженные, отрицательно и положительно заряженные).

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные(большинство), кислые(аспарагиновая и глутаминовая кислоты) и основные(лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимыеаминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимымотносят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е.их синтез происходит в недостаточном количестве, особенно это касается детей.

Аминокислоты обладают изомерией

Изомерия аминокислот в зависимости от положения аминогруппы

В зависимости от положенияаминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты.

α- и β- формы аланина

Для организма млекопитающих наиболее характерны α-аминокислоты.

Изомерия по абсолютной конфигурации

По абсолютной конфигурации молекулы выделяют D- и L-формы. Различия между изомерами связаны с взаимным расположением четырех замещающих групп, находящихся в вершинах воображаемого тетраэдра, центром которого является атом углерода в α-положении. Имеется только два возможных расположения химических групп вокруг него.

Две конформации тетраэдра

В белке любого организма содержится только один стереоизомер, для млекопитающих это L-аминокислоты.

L- и D-формы аланина

Однако оптические изомеры претерпевают самопроизвольную неферментативнуюрацемизацию, т.е. L-форма переходит в D-форму. Данное обстоятельство используется для определения возраста, например, костной ткани зуба (в криминалистике, археологии).

Читайте так же:  Протеин для сушки тела

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

ВИДЫ АМИНОКИСЛОТ ПО ФУНКЦИОНАЛЬНЫМ ГРУППАМ

Аминокислоты являются структурными единицами белков и, подобно строительной арматуре, выполняют важную роль в образование многих структур организма. Эти органические химические соединения объединяют в молекуле две группы – аминную и карбоксильную. Могут одновременно содержать в составе кислотную и основную функциональные группы. При этом по собственным свойствам, в частности, физическим, аминокислоты способны существенно отличаться от обычных кислот и оснований.

Существует несколько вариантов классификации аминокислот, вещества могут отличаться друг от друга по функциональным группам, радикалу, классам, по возможности синтеза самим организмом, по уровню кетоновых тел при распаде и даже способам получения (хотя, одна и та же аминокислота может синтезироваться зачастую разными способами). Остановимся подробнее на каждом виде классификации.

    Алифатические аминокислоты. Являются наиболее многочисленной группой

— монокарбоновые кислоты. Среди представителей этой группы такие аминокислоты, как: изолейцин, лейцин, глицин, аланин и валин.
— оксиаминокислоты. Группа включает в себя серин и треонин.
— моноаминодикарбоновые кислоты. Обладают отрицательным зарядом, благодаря наличию дополнительной карбоксильной группы. Включают такие аминокислоты, как аспартат и глутамат.
— амиды моноаминодикарбоновых кислот, включают в себя аспарагин и глутамин.
— серосодержащие аминокислоты, среди которых метионин и цистеин.
— диаминомонокарбоновые кислоты – это такие, как лизин и аргинин. Обладают положительным зарядом в растворах.

  • Ароматические аминокислоты. Молекула таких аминокислот обладает замкнутым ароматическим кольцом. Среди представителей этого класса: фенилаланин, тирозин, триптофан, (гистидин).
  • Гетероциклические аминокислоты. Включают в себя циклы углерода с другими атомами. Среди этой группы: триптофан, гистидин и пролин.
  • Иминокислоты. В группу можно включить такую аминокислоту, как пролин.
  • Как видно из классификации, некоторые группы могут включать в себя те же самые виды аминокислот, что и некоторые другие группы. Это обусловлено строением кислоты, которое может включать в себя, например, как ароматическое кольцо, так и гетероциклы.

    17. Α-Аминокислоты. Строение, классификация α-Аминокислот по природе радикала: алифатические, ароматические, гетероциклические. Заменимые и незаменимые α-Аминокислоты. Привести примеры.

    α-Аминокислоты — гетерофункциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу у одного и того же атома углерода.

    Многие α-аминокислоты синтезируются в организме. Некоторые аминокислоты, необходимые для синтеза белков, в организме не образуются и должны поступать извне. Такие аминокислоты называют незаменимыми

    К незаменимым α-аминокислотам относятся:

    валин изолейцин метионин триптофан

    лейцин лизин треонин фенилаланин

    Алифатические α-аминокислоты. Это наиболее многочисленная группа. Внутри нее аминокислоты подразделяют с привлечением дополнительных классификационных признаков.

    В зависимости от числа карбоксильных групп и аминогрупп в молекуле выделяют:

    • нейтральные аминокислоты — по одной группе NH2 и СООН;

    • основные аминокислоты — две группы NH2 и одна группа

    • кислые аминокислоты — одна группа NH2 и две группы СООН.

    Можно отметить, что в группе алифатических нейтральных аминокислот число атомов углерода в цепи не бывает больше шести. При этом не существует аминокислоты с четырьмя атомами углерода в цепи, а аминокисоты с пятью и шестью атомами углерода имеют только разветвленное строение (валин, лейцин, изолейцин).

    В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

    • гидроксильная — серин, треонин;

    • карбоксильная — аспарагиновая и глутаминовая кислоты;

    • амидная — аспарагин, глутамин.

    Ароматические α-аминокислоты. К этой группе относятся фенилаланин и тирозин, построенные таким образом, что бензольные кольца в них отделены от общего α-аминокислотного фрагмента метиленовой группой -СН2-.

    Гетероциклические α-аминокислоты. Относящиеся к этой группе гистидин и триптофан содержат гетероциклы — имидазол и индол соответственно. Строение и свойства этих гетероциклов рассмотрены ниже (см. 13.3.1; 13.3.2). Общий принцип построения гетероциклических аминокислот такой же, как и ароматических.

    Гетероциклические и ароматические α-аминокислоты можно рассматривать как β-замещенные производные аланина.

    К героциклическим относится также аминокислота пролин, в которой вторичная аминогруппа включена в состав пирролидинового

    Видео (кликните для воспроизведения).

    18. Свойства α-Аминокислот. Кислотно-основные свойства. Понятие об изоэлектрической точке (рI).

    Пояснить на конкретном примере.

    Амфотерность аминокислот обусловлена кислотными (СООН) и основными (NH2) функциональными группами в их молекулах. Аминокислоты образуют соли как со щелочами, так и с кислотами.

    В кристаллическом состоянии α-аминокислоты существуют как диполярные ионы H3N+ — CHR-COO- (обычно используемая запись

    строения аминокислоты в неионизированной форме служит лишь для удобства).

    В водном растворе аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм.

    Положение равновесия зависит от рН среды. У всех аминокислот преобладают катионные формы в сильнокислых (рН 1-2) и анион- ные — в сильнощелочных (рН >11) средах.

    Ионное строение обусловливает ряд специфических свойств аминокислот: высокую температуру плавления (выше 200 ?С), растворимость в воде и нерастворимость в неполярных органических растворителях. Способность большинства аминокислот хорошо растворяться в воде является важным фактором обеспечения их биологического функционирования, с нею связаны всасывание аминокислот, их транспорт в организме и т. п.

    Читайте так же:  Лучший шейкер для спортивного питания

    Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определенных значениях рН существенно зависит от строения радикала, главным образом от присутствия в нем ионогенных групп, играющих роль дополнительных кислотных и основных центров.

    Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты равны, называется изоэлектрической точкой (p/).

    Нейтральные α-аминокислоты. Эти аминокислоты имеют значения рI несколько ниже 7 (5,5-6,3) вследствие большей способности к ионизации карбоксильной группы под влиянием -/-эффекта группы NH2. Например, у аланина изоэлектрическая точка находится при рН 6,0.

    Кислые α-аминокислоты. Эти аминокислоты имеют в радикале дополнительную карбоксильную группу и в сильнокислой среде находятся в полностью протонированной форме. Кислые аминокислоты являются трехосновными (по Брёндстеду) с тремя значениями рКа, как это видно на примере аспарагиновой кислоты (р/ 3,0).

    У кислых аминокислот (аспарагиновой и глутаминовой) изоэлектрическая точка находится при рН много ниже 7 (см. табл. 12.1). В организме при физиологических значениях рН (например, рН крови 7,3-7,5) эти кислоты находятся в анионной форме, так как у них ионизированы обе карбоксильные группы.

    Основные α-аминокислоты. В случае основных аминокислот изоэлектрические точки находятся в области рН выше 7. В сильно- кислой среде эти соединения также представляют собой трехосновные кислоты, этапы ионизации которых показаны на примере лизина (р/ 9,8).

    В организме основные аминокислоты находятся в виде катионов, т. е. у них протонированы обе аминогруппы.

    В целом ни одна α-аминокислота in vivo не находится в своей изоэлектрической точке и не попадает в состояние, отвечающее наименьшей растворимости в воде. Все аминокислоты в организме находятся в ионной форме.

    19. Биологически важные реакции α-Аминокислот: а) трансаминирование; б) декарбоксилирование; в) дезаминирование: окислительное, восстановительное, внутримолекулярное, гидролитическое; г) образование пептидов.

    В организме под действием различных ферментов осуществляется ряд важных химических превращений аминокислот. К таким пре- вращениям относятся трансаминирование, декарбоксилирование, элиминирование, альдольное расщепление, окислительное дезаминирование, окисление тиольных групп.

    Трансаминирование является основным путем биосинтеза α-ами- нокислот из α-оксокислот. Донором аминогруппы служит аминокислота, имеющаяся в клетках в достаточном количестве или избытке, а ее акцептором — α-оксокислота. Аминокислота при этом превращается в оксокислоту, а оксокислота — в аминокислоту с соответствующим строением радикалов. В итоге трансаминирование представляет обратимый процесс взаимообмена амино- и оксо- групп. Пример такой реакции — получение l-глутаминовой кислоты из 2-оксоглутаровой кислоты. Донорной аминокислотой может служить, например, l-аспарагиновая кислота.

    α-Аминокислоты содержат в α-положении к карбоксильной группе электроноакцепторную аминогруппу (точнее, протонированную аминогруппу NH3+), в связи с чем способны к декарбоксилированию.

    Окислительное дезаминирование может осуществляться с участием ферментов и кофермента НАД+ или НАДФ+. α-Аминокислоты могут превращаться в α-оксокислоты не только через трансаминирование, но и путем окислительного дезаминирования. Например, из l-глутаминовой кислоты образуется α-оксоглутаровая кислота. На первой стадии реакции осуществляется дегид- рирование (окисление) глутаминовой кислоты до α-иминоглутаровой

    кислоты. На второй стадии происходит гидролиз, в результате которого получаются α-оксоглутаровая кислота и аммиак. Стадия гидролиза протекает без участия фермента.

    В обратном направлении протекает реакция восстановительного аминирования α-оксокислот. Всегда содержащаяся в клетках α-оксоглутаровая кислота (как продукт метаболизма углеводов) превращается этим путем в L-глутаминовую кислоту.

    Внутримолекулярное дезаминирование характерно для гистидина. Реакцию катализирует гистидаза (гистидин-аммиаклиаза). Эта реакция происходит только в печени и коже.

    Гидролитиическое дезаминирование происходит при помощи фермента аденозин дезаминаза и выглядит следующим образом:

    В результате образуются, как мы уже поняли, гидроксикислоты…

    Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с обра- зованием пептидной (амидной) связи между мономерными звеньями

    Биоорганическая химия

    Аминокислоты.

    Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные (-COOH) и аминные группы (-NH2).

    Строение аминокислот можно выразить приведённой ниже общей формулой, (где R – углеводородный радикал, который может содержать и различные функциональные группы).

    Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы (-NH2).

    В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин, и аминопропионовую кислоту или аланин:

    Химические свойства аминокислот

    Аминокислоты – амфотерные соединения, т.е. в зависимости от условий они могут проявлять как основные, так и кислотные свойства.

    За счёт карбоксильной группы (-COOH) они образуют соли с основаниями. За счёт аминогруппы (-NH2) образуют соли с кислотами.

    Ион водорода, отщепляющийся при диссоциации от карбоксила (-ОН) аминокислоты, может переходить к её аминогруппе с образованием аммониевой группировки (NH3 + ).

    Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных ионов (внутренних солей).

    Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

    Альфа-аминокислоты

    Из молекул аминокислот строятся молекулы белковых веществ или белков, которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.

    Читайте так же:  Креатин пить до еды или после

    Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.

    Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот.

    Альфа-аминокислоты – кристаллические вещества, растворимые в воде. Многие из них обладают сладким вкусом. Это свойство нашло отражение в названии первого гомолога в ряду альфа-аминокислот – глицина, явившегося также первой альфа-аминокислотой, обнаруженной в природном материале.

    Ниже приведена таблица с перечнем альфа-аминокислот:

    Классификация аминокислот

    Все встречающиеся в природе аминокислоты обладают общим свойством – амфотерностью (от греч. amphoteros – двусторонний), т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группы. Общий тип строения α-аминокислот может быть представлен в следующем виде:

    Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой радикала R, представляющего группу атомов в молекуле аминокислоты, связанную с α-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все α-амино- и α-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

    Классификация аминокислот разработана на основе химического строения радикалов, хотя были предложены и другие принципы. Различают ароматические и алифатические аминокислоты, а также аминокислоты, содержащие серу или гидроксильные группы. Часто классификация основана на природе заряда аминокислоты. Если радикал нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группы), то они называются нейтральными аминокислотами. Если аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

    Современная рациональная классификация аминокислот основана на полярности радикалов (R-групп), т.е. способности их к взаимодействию с водой при физиологических значениях рН (близких к рН 7,0). Различают 5 классов аминокислот, содержащих следующие радикалы: 1) неполярные (гидрофобные); 2) полярные (гидрофильные); 3) ароматические (большей частью неполярные); 4) отрицательно заряженные и 5) положительно заряженные. В представленной классификации аминокислот (табл. 1.3) приведены наименования, сокращенные английские и русские обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки (рI) и молекулярной массы (М). Отдельно даются структурные формулы всех 20 аминокислот белковой молекулы.

    Полярные, незаряженные R-группы

    Отрицательно заряженные R-группы

    [2]

    Положительно заряженные R-группы

    Перечисленные аминокислоты присутствуют в разных количественных соотношениях и последовательностях в тысячах белков, хотя отдельные индивидуальные белки не содержат полного набора всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот : оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин (последние две аминокислоты представлены в главе 2):

    Первые две аминокислоты содержатся в белке соединительной ткани – коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также ε-N-метиллизин; в состав протромбина (белок свертывания крови) входит γ-карбоксиглутаминовая кислота, а в глутатионпероксидазе открыт селеноцистеин, в котором ОН-группа серина заменена на селен (Se):

    Помимо указанных, ряд α-аминокислот выполняет важные функции в обмене веществ, хотя и не входит в состав белков, в частности орнитин, цитруллин, гомосерин, гомоцистеин, цистеинсульфиновая кислота, диоксифенилаланин и др.

    Классификация аминокислот

    БИОЛОГИЧЕСКАЯ ХИМИЯ

    Методический материал для самоподготовки)

    ТЕМА 1. СТРОЕНИЕ, КЛАССИФИКАЦИЯ

    И БИОЛОГИЧЕСКАЯ РОЛЬ АМИНОКИСЛОТ

    Задание:

    [1]

    1. Выучить предложенный теоретический материал.

    2. Ознакомиться с вариантами контрольной работы по теме.

    (Выполнение контрольной работы по этой теме проводится на первом лабораторном занятии в 6-м семестре, во время летней сессии).

    Аминокислотный состав белков

    Историческая справка.

    Первая аминокислота – глицин была выделена в 1820 г. методом кислотного гидролиза желатины,полностью расшифрован аминокислотный состав белков в 1938 г., когда была идентифицирована последняя аминокислота – треонин (Имеются данные, что первым был выделен аспарагин из аспарагуса в 1806 г.).

    Функции аминокислот.

    В настоящее время известно более 300 аминокислот, они могут выполнять разные функции:

    · входят в состав всех белков – их 20, и такие аминокислоты называют стандартными, или протеиногенными;

    · входят в состав только редких, или определённых, белков (например, оксипролин, 5-оксилизин входят в состав коллагена; десмозин – в состав эластина);

    · входят в состав других соединений (например, b-аланин входит в состав витамина В3, который необходим для синтеза КоА-SH);

    · являются промежуточными метаболитами обменных процессов (например, орнитин, цитруллин);

    · необходимы для синтеза биологически активных соединений, например, биогенных аминов, нейромедиаторов;

    · необходимы для синтеза азотсодержащих соединений (полиаминов, нуклеотидов и нуклеиновых кислот);

    · углеродный скелет аминокислот может использоваться для синтеза других соединений:

    а) глюкозы – такие аминокислоты называются глюкогенными (большинство из протеиногенных);

    Читайте так же:  Сколько нужно л карнитина перед тренировкой

    б) липидов – кетогенными (вал, лей, иле, фен, тир);

    · аминокислоты могут быть источником определенных функциональных групп – сульфатной (цистеин), одноуглеродных фрагментов (метионин, глицин и серин), аминогруппы (глутамин, аспарат).

    Номенклатура аминокислот.

    Аминокислоты – производные карбо-новых кислот, в молекуле которых атом водорода у С, стоящего в a-положении, замещён аминогруппой. Общая формула L-изомеров аминокислот:

    Отличаются аминокислоты между собой функциональными группами в боковой цепи (R). Каждая аминокислота имеет тривиальное, рациональное и сокращенное трех- или однобуквенное обозначение, например, глицин, аминоуксусная, гли.

    Тривиальное название чаще всего связано с источником выделения или свойствами аминокислоты:

    · серин входит в состав фиброина шелка (от лат. serius – шелковистый),

    · тирозин впервые выделен из сыра (от греч. tyros – сыр),

    · глутамин выделен из клейковины злаковых (от лат. gluten – клей),

    · цистин – из камней мочевого пузыря (от греч. kystis – пузырь),

    · аспарагиновая кислота – ростков спаржи (от лат. asparagus – спаржа),

    · глицин от греч. glykos – сладкий.

    Рациональное название складывается исходя из того, что каждая аминокислота является производной соответствующей карбоновой кислоты.

    Сокращенное обозначение используют для написания аминокислотного состава и последовательности аминокислот в цепи. В биохимии чаще всего применяют тривиальное и сокращенное обозначение.

    Классификация аминокислот.

    Существует несколько классификаций:

    1) по химической природе боковой цепи (R),

    2) рациональная классификация (по степени полярности радикала, по Ленинджеру),

    3) по способности синтезироваться в организме.

    По химической природе боковой цепи (R)

    все аминокислоты делятся на:

    (содержат 1 -NH2 и 1 -СООН группы);

    (содержат 1 -NH2 и 2 -СООН группы);

    (содержат 2 -NH2 и 1 -СООН группы);

    (содержат 2 -NH2 и 2 -СООН группы).

    1) гомоциклические (фен, тир);

    · аминокислоты (гис, три);

    По Ленинджеру

    (по способности радикала взаимодействовать с водой) все аминокислоты делят на 4 группы:

    · неполярные, незаряженные (гидрофобные) – их 8: ала, вал, лей, иле, мет, фен, три, про;

    · полярные, незаряженные (гидрофильные) – их 7: сер, тре, глн, асн, цис, тир, гли;

    · отрицательно-заряженные – их 2: асп, глу;

    · положительно-заряженные – их 3: гис, арг, лиз.

    По способности синтезироваться в организме

    аминокислоты могут быть:

    · заменимыми, которые могут синтезироваться в организме;

    · незаменимыми, которые не могут синтезироваться в орга-низме и должны поступать с пищей.

    Понятие «незаменимые» относительно для каждого вида – у человека и свиней их 10 (вал, лей, иле, тре, мет, фен, три, арг, гис, лиз), у животных с четырехкамерным желудком – 2 серосодержащие (цис, мет), у птиц – 1 (гли).

    Физико-химические свойства аминокислот:

    1. Растворимы в воде (лучше растворимы положительно- и отрицательно заряженные аминокислоты, затем гидрофиль-ные, хуже – гидрофобные).

    2. Имеют высокую точку плавления (обусловлено тем, что в кристаллическом виде находятся в виде биполярных ионов).

    3. Обладают оптической активностью, которая обусловлена наличием асимметрического атома углерода(за исключением гли). В связи с этим аминокислоты:

    · существуют в виде L- и D-стереоизомеров, но в состав белков высших животных входят в основном аминокислоты L-ряда; количество стереоизомеров зависит от количестваасимметрических атомов углерода и рассчитывается по формуле 2 n , где n – количество асимметрических атомов С;

    · способны вращать плоскость поляризованного света вправо или влево; величина удельного вращения у разных аминокислот варьирует от 10 до 30 º .

    4. Амфотерные свойства (аминокислоты, кроме гли, при физиологических значениях рН и в кристаллическом виде находятся в виде биполярных ионов). Величина рН, при которой суммарный заряд аминокислоты равен 0, называется изоэлектрической точкой. Для моноаминомонокарбоновых аминокислот она лежит в интервале 5,5-6,3, диаминомоно-карбоновых – больше 7, для дикарбоновых – меньше 7.

    5. Химические свойства:

    · кислотные свойства, обусловленные наличием карбоксильной группы;

    · основные свойства, обусловленные наличием аминогруппы;

    · свойства, обусловленные взаимодействием амино-

    и карбоксильной групп между собой;

    Видео (кликните для воспроизведения).

    · свойства, обусловленные наличием функциональных групп в боковой цепи.

    Источники


    1. Юнас Детская энциклопедия здоровья / Юнас, Дюрик Ян; , Петер. — М.: Освета, 1987. — 262 c.

    2. Черная, Е. И. Воспитание фонационного дыхания с использованием принципов дыхательной гимнастики «йоги» / Е.И. Черная. — М.: Граница, 2009. — 146 c.

    3. Нанотехнологии в биологии и медицине / ред. Е.В. Шляхто. — М.: СПб: Санкт-Петербург, 2009. — 92 c.
    4. Динейка, Каролис Движение, дыхание, психофизическая тренировка / Каролис Динейка. — М.: Полымя, 1981. — 144 c.
    5. Ситель, Анатолий Гимнастика для сосудов (+ DVD-ROM) / Анатолий Ситель. — М.: Книжный клуб 36.6, 2009. — 224 c.
    Классификация аминокислот по радикалу
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here