Классификация и номенклатура аминокислот

Сегодня предлагаем ознакомится со статьей на тему: классификация и номенклатура аминокислот с профессиональным описанием и объяснением.

Классификация и номенклатура аминокислот

Аминокислоты – производные карбоновых кислот, имеющие аминогруппу в α-положении. Классифицируются по строению, характеру заряженности и заменимости-незаменимости.

Классификация по строению:

б) диаминомонокарбоновые (лизин, аргинин, цитруллин);

в) моноаминодикарбоновые (аспарагиновая и глутаминовая кислоты);

г) диаминодикарбоновые (цистин).

Название по номенклатуре IUPAC формируется, как у карбоновых кислот вообще, с перечислением имеющихся в углеродной цепи заместителей. Например, аминокислота серин, имеющая строение:

будет называться 2-амино-3-гидроксипропановая кислота, а лизин, соответственно, 2,6-диаминогексановая. Однако, на практике, названия по номенклатуре IUPAC по отношению к протеиногенным аминокислотам никогда не применяют, обходясь исторически сложившимися тривиальными названиями. Исключение составляют лишь аспарагиновая и глутаминовая кислоты, для которых весьма часто используют названия аспартат и глутамат соответственно.

Очень важным свойством аминокислот является строение так называемого бокового радикала R, поскольку остальная часть молекулы, включающая карбоксильную группу, аминогруппу, асимметрический атом углерода и водород, для всех протеиногенных аминокислот совершенно одинакова:

Наличие в боковом радикале R функциональных групп, таких, как сульфгидрильная -SH, карбаминовая H2N-C(=O)-, гидроксильная HO-, аминогруппа H2N-, карбоксильная HOOC- и некоторые другие, оказывает решающее значение не только при формировании вторичной, третичной и четвертичной структур белковой молекулы, но и на ее биологические функции. В водных средах при различных значениях рН эти группы отвечают за формирование электрических зарядов белковой молекулы, ее растворимость и ряд других физико-химических свойств. Например, замена одного-единственного аминокислотного остатка (глутаминовой кислоты в положении 6) в полипептидной цепи субъединицы гемоглобина на остаток аминокислоты валин приводит к такому изменению свойств молекулы гемоглобина, что это вызывает патологию, называемую «серповидноклеточная анемия».

АМИНОКИСЛОТЫ

Аминокислоты —производные карбоновых кислот, имеющие аминогруппу в a- положении. Классифицируются по строению, характеру заряженности и заменимости-незаменимости.

Аминокислоты являются карбоновыми кислотами, содержащими аминную и карбоксильную группы, которые находятся у одного и того же углеродного атома. В организме человека найдено около 70 аминокислот, причем 20 из них входят в состав белков. Это так называемые протеиногенные аминокислоты. Применительно к аминокислотам используют как систематическую номенклатуру, так и тривиальные названия. Последние чаще всего связаны с источником их получения. Так, тирозин был впервые выделен из сыра (от греч.tyros-сыр), аспарагиновая кислота – из спаржи (от лат.asparagus- спаржа) и т.д. Аминокислоты кроме карбонильной и аминной группировок содержат боковые радикалы, причем именно эти химические группировки определяют большинство свойств той или иной аминокислоты. В общем виде формула аминокислоты может быть представлена следующим образом:

Классификация по строению .

б) диаминомонокарбоновые (лизин, аргинин, цитруллин)

в) моноаминодикарбоновые (аспарагиновая и глутаминовая кислоты);

г) диаминодикарбоновые (цистин).

Название по номенклатуре IUPAC формируется, как у карбоновых кислот вообще, с перечислением имеющихся в углеродной цепи заместителей. Например, аминокислота лизин, имеющая строение:

будет называться 2,6-диаминогексановая, а серин, соответственно, 2-амино-3-гидроксипропановая кислота. Однако, на практике, названия по номенклатуре IUPAC по отношению к протеиногенным аминокислотам никогда не применяют, обходясь исторически сложившимися тривиальными названиями. Исключение составляют лишь аспарагиновая и глутаминовая кислоты, для которых весьма часто используют названия аспартат и глутамат, соответственно.

Очень важным свойством аминокислот является строение так называемого бокового радикала R, поскольку остальная часть молекулы, включающая карбоксильную группу, аминогруппу, асимметрический атом углерода и водород для всех протеиногенных аминокислот совершенно одинакова:.

Наличие в боковом радикале R функциональных групп, таких, как сульфгидрильная –SH, карбаминовая H2N-C(=O)- , гидроксильная HO- , аминогруппа H2N-, карбоксильная HOOC- и некоторые другие, оказывает решающее значение не только при формировании вторичной, третичной и четвертичной структур белковой молекулы, но и на ее биологические функции. В водных средах при различных значениях рН эти группы отвечают за формирование электрических зарядов белковой молекулы, ее растворимость и ряд других физико-химических свойств. Например, замена одного-единственного аминокислотного остатка (глутаминовой кислоты в положении 6) в полипептидной цепи субъединицы гемоглобина на остаток аминокислоты валин приводит к такому изменению свойств молекулы гемоглобина, что это вызывает патологию, называемую “серповидноклеточная анемия”.

По характеру заряженности боковых радикалов аминокислоты подразделяют на :

Читайте так же:  Сколько креатина в день

а) неполярные гидрофобные (ГЛИ, АЛА, ВАЛ, ЛЕЙ, ИЛЕ, ПРО, ФЕН, ТИР, ТРИ, МЕТ);

б) полярные, но незаряженные (СЕР, ТРЕ, ЦИС, АСН, ГЛН);

в) полярные с отрицательным зарядом (АСП, ГЛУ);

г) полярные с положительным зарядом (ЛИЗ, АРГ, ГИС).

В зависимости от того, могут ли аминокислоты синтезироваться в организме или должны поступать в составе пищи, различаю т:

б) НЕЗАМЕНИМЫЕ АК (лейцин, изолейцин, валин, лизин, гистидин, метионин, фенилаланин, треонин, триптофан). В детском возрасте также незаменимой является АК АРГИНИН.

Для человека АРГ, ТИР- полузаменимые, а для курицы- незаменимые.

Список 20 протеиногенных аминокислот млекопитающих:

название структура (R-CH(NH2)-COOH) * **
ГЛИЦИН NH2-CH2-COOH ГЛИ G
АЛАНИН CH3-CH(NH2)-COOH АЛА A
ВАЛИН (CH3)2CH-CH(NH2)-COOH ВАЛ V Н
ЛЕЙЦИН CH3-CH(CH3)-CH2-CH(NH2)-COOH ЛЕЙ L Н
ИЗОЛЕЙЦИН CH3-CH2-CH(CH3)-CH(NH2)-COOH ИЛЕ I Н
СЕРИН HO-CH2-CH(NH2)-COOH СЕР S
ТРЕОНИН CH3-CH(OH)-CH(NH2)-COOH ТРЕ T Н
ЦИСТЕИН HS-CH2-CH(NH2)-COOH ЦИС C
МЕТИОНИН CH3-S-(CH2)2-CH(NH2)-COOH МЕТ M Н
ЛИЗИН NH2-(CH2)4-CH(NH2)-COOH ЛИЗ K Н
АРГИНИН NH2-C(=NH)-NH-(CH2)3-CH(NH2)-COOH АРГ R ПЗ
АСПАРАГИНООВАЯ К-ТА COOH-CH2-CH(NH2)-COOH АСП D
АСПАРАГИН NH2-C(=O)-CH2-CH(NH2)-COOH АСН N
ГЛУТАМИНОВАЯ К-ТА HOOC-(CH2)2-CH(NH2)-COOH ГЛУ E
ФЕНИЛАЛАНИН Ph-CH2-CH(NH2)-COOH ФЕН F Н
ГЛУТАМИН NH2-C(=O)-(CH2)2-CH(NH2)-COOH ГЛН Q
ТИРОЗИН HO-Ph-CH2-CH(NH2)-COOH ТИР Y ПЗ
ТРИПТОФАН ТРИ W Н
ГИСТИДИН ГИС H Н
ПРОЛИН ПРО P

*- однобуквенное международное обозначение

**- н- незаменимая; пз- полузаменимая; остальные- заменимые

Небелковые и редковстречающиеся аминокислоты :

a,g -ДИАМИНОПИМЕЛИНОВАЯ (только у бактерий) HOOC-CH(NH2)-(CH2)3-CH(NH2)-COOH

a- АМИНОАДИПИНОВАЯ (в белке зерна кукурузы) HOOC-(CH2)3-CH(NH2)-COOH

НЕПРОТЕИНОГЕННЫЕ АМИНОКИСЛОТЫ : b-АЛАНИН NH2-(CH2)2-COOH

ОРНИТИН

ЦИТРУЛЛИН

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9791 —

| 7398 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Классификация и номенклатура аминокислот

Существует несколько видов классификаций аминокислот входящих в состав белка.

А) В основу одной из классификаций положено химическое строение радикалов аминокислот. Различают аминокислоты:

1. Алифатические – глицин, аланин, валин, лейцин, изолейцин:

2. Гидроксилсодержащие – серин, треонин:

3. Серосодержащие – цистеин, метионин:

4. Ароматические – фенилаланин, тирозин, триптофан:

5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:

6. и амиды-аспарагиновой и глутаминовой кислот – аспарагин, глутамин.

7. Основные – аргинин, гистидин, лизин.

8. Иминокислота – пролин

Б) Второй вид классификации основан на полярности R-групп аминокислот.

Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.

Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

В) Аминокислоты классифицируют и на основе ионных свойств R-групп(таблица 1).

Кислые

(при рН=7 R-группа может нести отрицательный заряд) это аспарагиновая, глутаминовая кислоты, цистеин и тирозин.

Основные

(при рН=7 R-группа может нести положительный заряд) – это аргинин, лизин, гистидин.

Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).

Таблица 1 – Классификация аминокислот на основе полярности
R-групп.

Аминокислоты Принятые однобуквенные обозначения и символы Изоэлектрическая точка, рI Среднее содержание в белках,%
Англ. символ Русск.
1. Неполярные R-группы Глицин Аланин Валин Лейцин Изолейцин Пролин Фенилаланин Триптофан 2. Полярные, незаряженные R-группы Серин Треонин Цистеин Метионин Аспарагин Глутамин
Продолжение таблицы 1

3. Отрицательно заряженные
R-группы

4. Положительно заряженные
R-группы

GLy ALa VaL Leu Lie Pro Phe Trp Ser Thr Cys Met Asn GLn Tyr Asp GLy Lys Arg His G A V L I P F W S T C M N Q Y D E K R N Гли Ала Вал Лей Иле Про Фен Трп Сер Тре Цис Мет Асн Глн Тир Асп Глу Лиз Арг Гис 5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88 5,68 6,53 5,02 5,75 5,41 5,65 5,65 2,97 3,22 9,74 10,76 7,59 7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1 7,1 6,0 2,8 1,7 4,4 3,9 3,5 5,5 6,2 7,0 4,7 2,1
Читайте так же:  Креатин моногидрат рейтинг лучших

Г) По числу аминных и карбоксильных групп аминокислоты делятся:

на моноаминамонокарбоновые, содержащие по одной карбоксильной и аминной группе;

– моноаминодикарбоновые (две карбоксильные и одна аминная группа);

– диаминомонокарбоновые (две аминные и одна карбоксильная группа).

Д) По способности синтезироваться в организме человека и животных все аминокислоты делятся:

на заменимые,

Незаменимые аминокислоты не могут синтезироваться в организме человека и животных они обязательно должны поступать вместе с пищей. Абсолютно незаменимых аминокислот восемь: валин, лейцин,изолейцин,треонин,триптофан, метионин,лизин, фенилаланин.

Частично незаменимые — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин, тирозин.

Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Классификация и номенклатура аминокислот

4.1. Номенклатура аминокислот

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита. Пример:

Для a -аминокислот, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Некоторые важнейшие a -аминокислоты общей формулы

Классификация и номенклатура аминокислот.

Существует несколько видов классификаций аминокислот входящих в состав белка.

В основу одной из классификаций положено химическое строение радикалов аминокислот. Различают аминокислоты:

1. Алифатические – глицин, аланин, валин, лейцин, изолейцин:

2. Гидроксилсодержащие – серин, треонин:

3. Серосодержащие – цистеин, метионин:

4. Ароматические – фенилаланин, тирозин, триптофан:

5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:

6. и амиды-аспарагиновой и глутаминовой кислот – аспарагин, глутамин.

7. Основные – аргинин, гистидин, лизин.

8. Иминокислота – пролин

Второй вид классификации основан на полярности R-групп аминокислот. Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.

Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

Аминокислоты классифицируют и на основе ионных свойств R-групп (таблица 1). Кислые (при рН=7 R-группа может нести отрицательный заряд) это аспарагиновая, глутаминовая кислоты, цистеин и тирозин. Основные (при рН=7
R-группа может нести положительный заряд) – это аргинин, лизин, гистидин.

Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).

Таблица 1 – Классификация аминокислот на основе полярности
R-групп.

Аминокислоты Принятые однобуквенные обозначения и символы Изоэлектрическая точка, рI Среднее содержание в белках,%
Англ. символ Русск.
1. Неполярные R-группы Глицин Аланин Валин Лейцин Изолейцин Пролин Фенилаланин Триптофан 2. Полярные, незаряженные R-группы Серин Треонин Цистеин Метионин Аспарагин Глутамин
Продолжение таблицы 1

4. Положительно заряженные
R-группы

[2]

GLy ALa VaL Leu Lie Pro Phe Trp Ser Thr Cys Met Asn GLn Tyr Asp GLy Lys Arg His G A V L I P F W S T C M N Q Y D E K R N Гли Ала Вал Лей Иле Про Фен Трп Сер Тре Цис Мет Асн Глн Тир Асп Глу Лиз Арг Гис 5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88 5,68 6,53 5,02 5,75 5,41 5,65 5,65 2,97 3,22 9,74 10,76 7,59 7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1 7,1 6,0 2,8 1,7 4,4 3,9 3,5 5,5 6,2 7,0 4,7 2,1

По числу аминных и карбоксильных групп аминокислоты делятся на моноаминамонокарбоновые, содержащие по одной карбоксильной и аминной группе; моноаминодикарбоновые (две карбоксильные и одна аминная группа); диаминомонокарбоновые (две аминные и одна карбоксильная группа).

[1]

По способности синтезироваться в организме человека и животных все аминокислоты делятся на заменимые, незаменимые и частично незаменимые.

Читайте так же:  Природные жиросжигатели для мужчин

Незаменимые аминокислоты не могут синтезироваться в организме человека и животных они обязательно должны поступать вместе с пищей. Абсолютно незаменимых аминокислот восемь: валин, лейцин,изолейцин,треонин,триптофан, метионин,лизин, фенилаланин.

Частично незаменимые — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин, тирозин.

Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.

Классификация и номенклатура аминокислот

Видео удалено.
Видео (кликните для воспроизведения).

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты аминокислоты: пролин.

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин и тирозин

— амидную группу: глутамин, аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Читайте так же:  Витамин в6 инструкция по применению

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Аминокислоты: классификация, номенклатура, физические и химические св-ва,практическое применение.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатсякарбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водородазаменены на аминные группы.

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставкаамино с указанием положения аминогруппы буквой греческого алфавита. Пример:

Для a-аминокислот, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Некоторые важнейшие a-аминокислоты общей формулы

Аминокислота -R
Глицин
Аланин -CH3
Фенилаланин -CH2-C6H5
Валин -СH(CH3)2
Лейцин -CH2-CH(CH3)2
Серин -CH2OH

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота:

Аминокислоты — бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

[править]Общие химические свойства

Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основныесвойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2CH2COOH + HCl → HClNH2CH2COOH (хлороводородная соль глицина)

NH2CH2COOH + NaOH → H2O + NH2CH2COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

NH2CH2COOH N + H3CH2COO

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

NH2CH2COOH + CH3OH → H2O + NH2CH2COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOCCH2NHH + HOOCCH2NH2→ HOOCCH2NHCOCH2NH2 + H2O

Изоэлектрической точкой

аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Читайте так же:  Глютамин какой лучше выбрать

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3 + , а карбоксигруппа — в виде -COO − . Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Применение

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты [4] .

14. Моносахариды: классификация, номенклатура, физические и химические св-ва,практическое применение.

Моносахариды (от греческого monos: единственный, sacchar: сахар), — органические соединения, одна из основных групп углеводов; самая простая форма сахара; являются обычно бесцветными, растворимыми в воде, прозрачными твердыми веществами. Некоторые моносахариды обладают сладким вкусом. Моносахариды — стандартные блоки, из которых синтезируются дисахариды (такие, как сахароза, мальтоза, лактоза), олигосахариды и полисахариды (такие, как целлюлоза и крахмал), содержат гидроксильные группы и альдегидную(альдозы) или кетогруппу (кетозы). Каждый углеродный атом, с которым соединена гидроксильная группа (за исключением первого и последнего), является хиральным, что дает начало многим изомерным формам. Например, галактоза и глюкоза — альдогексозы, но имеют различные химические и физические свойства. Моносахариды представляют собой производные многоатомных спиртов, содержащие карбонильную группу — альдегидную или кетонную [1] .

Виды моносахаридов

Моносахариды подразделяют на триозы, тетрозы, пентозы, гексозы и т. д. (3, 4, 5, 6 и т. д. атомов углерода в цепи); природные моносахариды с углеродной цепью, содержащей более 9 атомов углерода, не обнаружены. Моносахариды, содержащие 5-членный цикл, называются фуранозами, 6-членный — пиранозами.

Для моносахаридов, содержащих n асимметричных атомов углерода, возможно существование 2n стереоизомеров

Не все следующие монозы найдены в природе, некоторые были синтезированы:альдоза,кетоза.

Химические свойства

Моносахариды вступают в химические реакции, свойственные карбонильной и гидроксильной группам. Характерная особенность моносахаридов — способность существовать в открытой (ациклической) и циклической формах и давать производные каждой из форм. Большинство моноз циклизуются в водном растворе с образованием гемиацеталей илигемикеталей (в зависимости от того, являются ли они альдозами или кетозами) между спиртом и карбонильной группой того же самого сахара. Глюкоза, например, легко образуетполуацетали, соединяя свои своим С1 и О5, чтобы сформировать 6-членное кольцо, названное пиранозид. Та же самая реакция может иметь место между С1 и О4, чтобы сформировать 5-членное фуранозид.

Применение

Некоторые свободные моносахариды и их производные (например, глюкоза, фруктоза и её дифосфат и др.) используются в пищевой промышленности и медицине.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

[3]

Видео удалено.
Видео (кликните для воспроизведения).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источники


  1. Диетология. Руководство / Коллектив авторов. — М.: Питер, 2017. — 712 c.

  2. Авдеева, Т. Г. Введение в детскую спортивную медицину / Т.Г. Авдеева, Л.В. Виноградова. — М.: ГЭОТАР-Медиа, 2009. — 98 c.

  3. Базеко Все секреты здорового питания / Базеко. — Москва: Мир, 2003. — 856 c.
  4. Авдеева, Т. Г. Введение в детскую спортивную медицину / Т.Г. Авдеева, Л.В. Виноградова. — М.: ГЭОТАР-Медиа, 2009. — 98 c.
  5. Румянцева, Т. Дневник диабетика. Дневник самоконтроля при сахарном диабете / Т. Румянцева. — М.: АСТ, Астрель-СПб, 2007. — 384 c.
Классификация и номенклатура аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here