Количество аминокислот в молекуле белка

Сегодня предлагаем ознакомится со статьей на тему: количество аминокислот в молекуле белка с профессиональным описанием и объяснением.

Количество аминокислот в молекуле белка

Б елками, или протеинами, называют высокомолекулярные азотсодержащие соединения, состоящие из аминокислот, соединённых в цепочку пептидной связью. Белки синтезируются из аминокислот и превращаются в аминокислоты при переваривании в желудочно-кишечном тракте или катаболизме в организме. Функции белков в клетках живых организмов очень разнообразны — они так или иначе участвуют практически во всех аспектах жизнедеятельности организма.

Природных аминокислот насчитывается около 150, но при синтезе в живых организмах, в большинстве случаев, используется 20 стандартных аминокислот.

С точки зрения питания аминокислоты делят на незаменимые и заменимые.

Незаменимые аминокислоты не синтезируются в организме человека и обязательно должны поступать с пищей. К ним относятся девять аминокислот: валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, гистидин. Гистидин относят к незаменимым аминокислотам только для новорожденных. Если количество этих аминокислот в пище недостаточно, нормальное развитие и функционирование организма человека нарушается.

Заменимыми называются аминокислоты, которые организм способен синтезировать из других заменимых аминокислот или азота незаменимых аминокислот. К ним относятся остальные 11 аминокислот.

Определенное количество заменимых аминокислот также должно поступать с пищей, иначе на их образование станут расходоваться незаменимые аминокислоты. Полностью метаболически заменимыми считаются только глутаминовая кислота и серин.

Классификация аминокислот на заменимые и незаменимые также не лишена недостатков, например тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

Современные данные свидетельствуют о том, что биосинтез заменимых аминокислот в количествах, обеспечивающих полностью потребности организма чаще всего невозможен, поэтому следует помнить, что незаменимые и заменимые аминокислоты в равной степени важны для построения белков организма.

Аминокислоты, составляющие белки тела и пищи

Свойства белков определяются набором аминокислот, из которых они состоят, общим числом аминокислот и последовательностью, в которой они соединяются друг с другом. Комбинация из 20 аминокислот, каждая из которых может встречаться в белке сколько угодно раз, позволяет создавать практически неограниченное количество уникальных белковых молекул. Организм человека содержит, по меньшей мере, 30 000 различных белков, только в печени насчитывается более 1000 белков-ферментов.

Функции белка

Белки являются обязательными компонентами всех живых клеток. Одна пятая часть тела человека состоит из белка. Белок содержится практически во всех органах и тканях. Только моча и желчь в норме не содержат белка. Половина всего белка находится в мышцах, 1/5 — в костях и хрящах, 1/10 — в коже. Волосы, кожа, ногти также содержат белок кератин. Этот белок не переваривается и не усваивается в кишечнике.

Биологические функции белков крайне разнообразны. С участием белков осуществляются рост и размножение клеток. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген), сократительные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (альбумин) и другие функции. Белки составляют основу биологических клеточных мембран — важнейшей составной части клетки и клеточных органелл.

При участии белков регулируется и поддерживается нормальный водный баланс организма, сохраняются нормальные рН среды. Белки крови создают онкотическое давление, которое удерживает жидкость в кровеносных сосудах и препятствует накоплению жидкости во внеклеточном пространстве. При сниженном уровне белков в плазме крови онкотическое давление не уравновешивает осмотическое давление, которое выталкивает жидкость из сосудов. Это приводит к развитию отеков (т.н. «голодные отеки»).

Оценка качества пищевых белков

В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются и используются на образование новых белков организма либо расходуются на получение энергии, либо аминокислоты являются предшественниками для образования новых заменимых аминокислот. Качество пищевого белка определяется наличием в нем полного набора незаменимых аминокислот в определенном количестве и в определенном соотношении с заменимыми аминокислотами.

Качество пищевого белка оценивается рядом биологических и химических методов:

    Оценка биологической ценности белка
    Под биологической ценностью белка (или содержащей белок пищи) подразумевают долю усвоенного организмом азота от всего всосавшегося в ЖКТ азота. Измерение биологической ценности белка основывается на том, что усваивание азота организмом выше при адекватном содержании незаменимых аминокислот в пищевом белке, достаточном для поддержания роста организма.

Коэффициент эффективности белка
Показатель коэффициента эффективности белка основан на предположении, что прирост массы тела растущих животных пропорционален количеству потребленного белка.

Аминокислотный скор белка
Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в «идеальном» белке. Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

Понятие «идеальный» белок включает представление о гипотетическом белке высокой пищевой ценности, полностью удовлетворяющем потребность организма человека в незаменимых аминокислотах. Для взрослого человека в качестве «идеального» белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ. Аминокислотная шкала показывает содержание каждой из незаменимых аминокислот в 100 г стандартного белка.

Наиболее близки к «идеальному» белку животные белки мяса, яиц и молока. Большинство растительных белков содержат недостаточное количество одной или нескольких незаменимых аминокислот. Например, белки злаковых культур, а также полученные из них продукты неполноценны (лимитированы) по лизину и треонину. Белки ряда бобовых культур (соя и фасоль исключение) лимитированы по метионину и цистеину (60-70% оптимального количества).

В процессе тепловой обработки или длительного хранения продуктов из некоторых аминокислот могут образоваться не усвояемые организмом соединения, т.е. аминокислоты становятся «недоступными». Это снижает ценность белка.

Пищевая ценность белков может быть улучшена (т.е. увеличена биологическая ценность или аминокислотный скор по лимитирующим кислотам) путем добавления лимитирующей аминокислоты или внесения компонента с ее повышенным содержанием, или путем смешивания белков с различными лимитирующими аминокислотами. Так, биологическая ценность белка пшеницы может быть повышена добавлением 0,3-0,4% лизина, белка кукурузы — 0,4% личина и 0,7% триптофана. Приготовление смешанных блюд, содержащих животные и растительные продукты, способствует получению полноценных пищевых белковых композиций.

Переваривание белков и всасывание аминокислот

Все пищевые белки, состоящие из длинной цепи аминокислот, не способны всасываться в желудочно-кишечном тракте. Они расщепляются на свободные аминокислоты или фрагменты, состоящие из 2 или 3 аминокислот. Расщепление белков катализируют специфические пищеварительные ферменты — протеазы. Степень перевариваемости белков колеблется от 65% для некоторых растительных белков до 97% для белка яиц.

Свободные аминокислоты всасываются в кровоток и транспортируются в органы и ткани, в первую очередь в печень. Наибольшее количество аминокислот захватывается печенью, где синтезируются белки плазмы крови и специфические белки-ферменты. Аминокислоты, не участвующие в биосинтезе новых белковых молекул, подвергаются в печени процессу дезаминирования, т.е. отщеплению аминогруппы. В процессах дезаминирования участвуют активные формы витамина В6.

Читайте так же:  Питательная маска молочный протеин

Азотсодержащий остаток аминокислот превращается в мочевину и экскретируется с мочой. Не содержащая азота часть молекулы аминокислот превращается в углеводы или жиры и окисляется для образования энергии или запасается в виде жира.

Коэффициент перевариваемости белков пищи у человека

Продукты Коэффициент перевариваемости, %
Яйца 97
Молоко, сыры 95
Мясо, рыба 94
Кукуруза 85
Полированный рис 88
Цельное зерно пшеницы 86
Мука пшеничная 96
Крупа манная 99
Овсяные хлопья 86
Просо 79
Горох зрелый 88
Бобы 78

Потребность организма в белке

В организме человека отсутствует большое депо для запасания белков. Отчасти функцию депо выполняют белки плазмы крови и печени. Альбумин плазмы крови служит лабильным резервом белка, и для обеспечения жизненно необходимой потребности в аминокислотах происходит его расщепление. Глобулины плазмы крови не подвергаются расщеплению даже при истощении запасов альбумина.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы — на 93-95%, то белки хлеба — на 62-86%, овощей — на 80%, картофеля и некоторых бобовых — на 70%.

Однако смесь этих продуктов может быть биологически более полноценной в силу взаимного обогащения одних белков аминокислотами других.

На степень усвоения организмом белков оказывают влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т.д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренной тепловой обработке пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой обработке усвояемость снижается. При глубоком жареньи с образованием корочки и обугливании часть аминокислот разрушается или снижается усвоение белка из этих частей блюда или продукта.

Потребность в белке — это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается, с одной стороны, физиологическое состояние организма, а с другой — свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависят переваривание, всасывание и метаболическая утилизация аминокислот.

Потребность в белке состоит из двух компонентов. Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке. Второй компонент потребности в белке определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

Потребность в незаменимых аминокислотах в различном возрасте мг/кг в сутки

Длинная молекула белка сворачивается и приобретает сначала

Аминокислоты и азотом аминогруппы другой аминокислоты.

Возникающими между углеродом карбоксильной группы одной

Белок. Соседние аминокислоты связаны пептидными связями,

Нуклеотидов в участке молекулы ДНК (гене), кодирующем данный

Его первичную структуру. Она зависит от последовательности

Последовательность аминокислот в молекуле белка образует

Структура белковой молекулы. Под структурой белковой молекулы понимают ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы,которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Различных по структуре и функциям белков.

Последовательности позволяет получать огромное количество

Нескольких сотен. Чередование разных аминокислот в разной

Другом. Их количество в одной молекуле может достигать

Основания (они амфотерны), поэтому могут соединяться друг с

Друг от друга. Аминокислоты обладают свойствами кислоты и

Аминогруппу NH2 и карбоксильную группу СООН и изменяемую

Азота и иногда серы. Мономерами белков являются аминокислоты

В состав белков входят атомы углерода, кислорода, водорода,

Организмах и выполняют в них определенные функции.

Которых являются аминокислоты. Белки синтезируются в живых

Белки, их строение и функции

Белки – это биологические гетерополимеры, мономерами

– вещества, имеющие в своем составе неизменяемые части

часть – радикал. Именно радикалами аминокислоты отличаются

вид спирали. Так возникает вторичная структура белковой молекулы. МеждуСО и NH – группами аминокислотных остатков, соседних витков спирали, возникают водородные связи, удерживающие цепь.

Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S‐S связями.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентнымисвязями – ионными, водородными, гидрофобными. Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность. Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.

Дата добавления: 2014-10-23 ; Просмотров: 638 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Органические вещества. Аминокислоты. Белки

Читайте также:

  1. II. Органические пестициды
  2. АМИНОКИСЛОТЫ, ПЕПТИДЫ И БЕЛКИ
  3. Белки мышечной ткани
  4. Белки, их строение и функции
  5. Биологически активные неорганические соединения (строение, свойства, участие в функционировании живых систем). Физико-химия поверхностных явлений и свойства дисперсных систем
  6. Вредные вещества.
  7. Вредные химические вещества. Яды
  8. Д. Органические красители
  9. Для разбавленных растворов относительное понижение давления пара растворителя над раствором численно равно молярной доле растворенного вещества.
  10. Изобразите графически описанные выше зависимости поверхностного натяжения раствора от концентрации растворенного вещества.
  11. Качественные реакции на белки
  12. Контактного действия – действуют только на те участки растений, куда попали (органические соединения ртути, цианиды, кислота серная, медный купорос).

Органические вещества.

В состав живых организмов, кроме неорганических, входят также разнообразные органические вещества. Органические вещества живых существ образованы, прежде всего, четырьмя химическими элементами, называемыми биогенными: углеродом, водородом, кислородом и азотом. В составе белков к этим элементам прибавляется сера, а в нуклеиновых кислотах – фосфор.

Многообразие органических веществ в значительной степени определяется углеродом. Этот элемент благодаря уникальным свойствам составляет химическую основу жизни. Он может образовывать ковалентные связи со многими атомами и их группами, образуя цепочки, кольца, составляющие скелет различных по составу, строению, длине и форме органических молекул. Из них в свою очередь, образуются сложные химические соединения, различающиеся по строению и функциям. Основная причина разнообразия органических молекул – это не столько отличие составляющих их атомов, сколько различный порядок их размещения в молекуле.

Понятие о биополимерах.

В живом организме органические вещества представлены либо небольшими, с относительно низкой молекулярной массой молекулами, либо крупными макромолекулами. К низкомолекулярным соединениям относятся аминокислоты, сахара, органические кислоты, спирты, витамины и др.

Белки, полисахариды и нуклеи­новые кислоты в большинстве своем являются структурами с большой молекулярной массой. Поэтому их называют макромолекулами (от греч. макрос – большой). Так, молекулярная масса большинства белков составляет от 5000 до 1 000000. [BЭ18] Высокомолекулярные органические соединения – белки, нуклеиновые кислоты, полисахариды, молекулы которых состоят из большого количества одинаковых или разных по химическому строению повторяющихся звеньев, называются биополимерами(от греч. биос – жизнь и полис – многочисленный). Простые молекулы, из остатков которых состоят биополимеры, называются мономерами. Мономерами белков являются аминокислоты, полисахаридов – моносахариды, нуклеиновых кислот – нуклеотиды. Макромолекулы составляют около 90 % сухой массы клетки.

Читайте так же:  Витамины для волос в аптеке

В этой главе рас­смотрены все три класса макромолекул и их мономерные звенья. К рассмотрению до­бавлены липиды — молекулы, как правило, зна­чительно более мелкие, чем биополимеры, но также выполняющие функции в организме. [VV19]

Особую группу органических веществ составляют биологически активные вещества: ферменты, гор­моны, витамины и др. Они разнообразны по строению; влияют на обмен веществ и превращение энергии.

В клетках различных групп организмов содержа­ние определенных органических соединений разное. Например, в клетках животных преобладают белки и жиры, а в клетках растений — углеводы. Однако в различных клетках определенные органиче­ские соединения выполняют схожие функции.

Белки.

В живых организмах среди макромолекул по своему функциональному значению ведущая роль принадлежат белкам. Белки во многих организмах преобладают и количественно. Так, в организме животных они составляют 40–50 %, в организме растений – 20 – 35 % их сухой массы. Белки – это гетерополимеры, мономерами которых являются аминокислоты.

Аминокислоты – «кирпичики» белковых молекул.

Аминокислоты – органические соединения, содержащие одновременно аминогруппу (–NН

), для которой характерны основные свойства, и карбоксильную группу (–СООН) с кислотными свойствами. Аминогруппа и карбоксильная группы связаны с одним и тем же атомом углерода (рис. ). По этому признаку все аминокислоты сходны между собой. У большей части белокобразующих аминокислот имеется одна карбоксильная груп­па и одна аминогруппа; эти ами­нокислоты называются нейтраль­ными.

Часть молекулы, называемой радикалом (R) у разных аминокислот имеет различное строение (рис. ). Радикал у разных аминокислот может быть неполярным или полярным (заряженным или незаряженным), гидрофобным или гидрофильным, что и придает белкам определенные свойства. Помимо нейтральных, существуют ос­новные аминокислоты — с более чем одной аминогруппой, а также кислые аминокислоты — с более чем одной карбоксильной группой. Наличие дополнительной амино- или гидроксильной группы оказывает влияние на свойства радикала. Все свойства радикалов аминокислот играют определяющую роль в формировании пространственной структуры белка.

Общее число известных аминокислот около 200, а в образовании природных белков участвует только 20 видовт. Такие аминокислоты называются белокобразующими (таблица 2; в таблице приведены полное и сокращенное названия аминокислот, не для запоминания).

[2]

Таблица 2. Основные аминокислоты и их сокращенное обозначение[VV20]

Название аминокислоты Символ Название аминокислоты Символ
Аланин Аргинин Аспарагин Аспарагиновая кислота Валин Гистидин Глицин Глутамин Глутаминовая кислота Изолейцин Ала Арг Асн Асп Вал Гис Гли Глн Глу Иле Лейцин Лизин Метионин Пролин Серин Тирозин Треонин Триптофан Фенилаланин Цистеин Лей Лиз Мет Про Сер Тир Тре Три Фен Цис

Растения и бактерии могут синтезировать все необходимые им аминокислоты из первичных продуктов фотосинтеза. Человек и животные не способ­ны синтезировать все аминокислоты, поэтому так называемые незаменимые аминокислоты они должны полу­чать в готовом виде вместе с пищей.

Незаменимыми аминокислотами для человека являются: лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофаниметионин; для де­тей незаменимыми являются так­же аргинини гистидин. Белки пищи, содержащие все незаменимые аминокислоты, называются полноценными, в отличие от неполноценных, в которых отсутствуют те или иные незаменимые аминокислоты.

Наличие в одной аминокислоте и основной, и кислотной групп обусловливает их амфотерность и высокую реактивность. Аминогруппа

(–NH2) одной аминокислоты способна взаимодействовать с карбоксильной группой (–СООН) другой аминокислоты с выделением молекулы воды. Образующаяся при этом молекула представляет собой дипептид (рис. ), а связь –СО—NН– называется пеп­тид­ной. На одном конце молекулы дипептида находится свободная аминогруппа, а на другом карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много амино­кислот (более десяти), то образуется длинная цепь – полипептид.

Пептиды играют важную роль в организме. Многие олиго- и полипептиды являются гормонами, антибиотиками, токсинами.

К олигопептидам относятся, например, гормоны гипофиза окситоцин и вазопрессин, а также брадикинин (пеп­тид боли) и некоторые опиаты («есте­ственные наркотики» человека), выпол­няющие функцию обезболивания. Регулярное[VV21] употребление Употребление наркотиков очень опасно, оно разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает сильную боль — «ломку». К олигопептидам от­носятся некоторые антибиотики, напри­мер, грамицидин S.

Гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (грамицидин А), токсины (дифтерийный токсин) также являются полипептидами.

Полипептидные цепи бывают очень длинными и включают самые различные комбинации аминокислот. По­липептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислотных остатков с молекулярной массой свыше 6000[BЭ22] , называются белками.

Каждый конкретный белок характеризуется строго постоянным соста­вом и по­следовательностью аминокислотных остатков.

Уровни организации белковой молекулы.

Молекулы белков могут принимать различные пространственные формы конформации, которые представляют собой четыре уровня их организации (рис.)

Це­поч­ка из множества ами­но­кис­лот­ных ос­тат­ков, соединенных пептидными связями пред­став­ля­ет со­бой пер­вич­ную струк­ту­ру бел­ко­вой мо­ле­ку­лы. Эт­о наи­бо­лее важ­ная струк­ту­ра, так как она определяет его форму, свойства и функции. На ос­но­ве первичной структуры соз­да­ют­ся дру­гие ви­ды струк­ту­р. Именно эта структура закодирована в молекуле ДНК. Каждый индивидуальный белок организма имеет уникальную первичную структуру. Все молекулы конкретного индивидуального[VV23] белка (например, альбумина) имеют одинаковое чередование аминокислотных остатков, отличающее альбумин от любого другого индивидуального белка. Мно­го­об­ра­зие пер­вич­ной струк­ту­ры оп­ре­де­ля­ет­ся составом, ко­ли­че­ст­вом и по­ряд­ком сле­до­ва­ния ами­но­кис­лотных остатков в по­ли­пеп­тид­ной це­пи.

Вторичная структура белков возникает в результате образования водородных связей между атомом водорода NH-груп­п и атомом кислорода CO-груп­п разных аминокислотных остатков полипептидной цепи. По­ли­пеп­тид­ная цепь при этом за­кру­чи­ва­ет­ся в спи­раль. Хотя водородные связи слабые, но благодаря значительному количеству они обеспечивают стабильность этой структуры. Полностью спиральную конфигурацию имеют молекулы белка кератина. Это структурный белок волос, шерсти, когтей, перьев и рогов; он входит в состав наружного слоя кожи позвоночных. Помимо кератина спиральная вторичная структура характерна для фибриллярных (нитевидных) белков, таких как миозин, фибриноген, коллаген.

Вторичная структура белка, помимо спирали, может быть представлена складчатым слоем. В складчатом слое несколько полипептидных цепей (или участков одной полипептидной цепи) лежат параллельно, образуя плоскую конфигурацию, сложенную наподобие гармошки (рис. б6). Вторичную структуру в форме складчатого слоя имеет, например, белок фиброин, составляющий основную массу шелкового волокна, выделяемого шелкоотделительными железами гусеницы шелкопряда при сплетении коконов.

Тре­тич­ная струк­ту­ра соз­да­ет­ся S—S свя­зя­ми («ди­суль­фид­ны­ми мос­ти­ка­ми») ме­ж­ду ос­тат­ка­ми цис­теи­на (ами­но­кис­ло­та, со­дер­жа­щая се­ру), а так­же во­до­род­ны­ми, ион­ны­ми и другими[VV24] взаи­мо­дей­ст­вия­ми. Тре­тич­ной струк­­ту­рой оп­ре­де­ля­ют­ся спе­ци­фич­ность бел­ко­вых мо­ле­кул, их био­ло­ги­че­ская ак­тив­ность. Третичную структуру имеют такие белки, как миоглобин[VV25] (белок, находящийся в мышцах; участвует в создании запасов кислорода), трипсин (фермент, расщепляющий белки в кишечнике).

[1]

В не­ко­то­рых слу­ча­ях не­сколь­ко по­ли­пеп­тид­ных це­пей с тре­тич­ной структурой объ­е­ди­ня­ют­ся в еди­ный ком­плекс, при этом об­ра­зу­ет­ся чет­вер­тич­­ная струк­ту­ра. В ней бел­ко­вые субъ­­е­ди­ни­цы не свя­за­ны ко­ва­лент­но, а проч­ность обес­пе­чи­ва­ет­ся взаи­мо­дей­ст­ви­ем сла­бых меж­мо­ле­ку­ляр­­ных сил. Например, чет­вер­тич­ная струк­ту­ра характерна для бел­ка ге­мо­гло­бина, со­стоя­щего их четырех бел­ко­вых субъ­­еди­ниц и не­бел­ко­вой час­ти — ге­ма.

Читайте так же:  Спортпит жиросжигатели для женщин
Видео (кликните для воспроизведения).

s1. Что такое белки? 2. Каково строение белков? 3. Что такое аминокислоты? 4. Каким образом аминокислоты соединяются в полипептидную цепь? 5. Какие уровни структур­ной организации белков существуют? 6.Какие химические связи обусловливают различные уровни структурной организации белковых молекул? 7.Имеется три вида аминокислот А.В.С. Сколько вариантов полипептидных цепей, состоящих из пяти аминокислот, можно построить? Будут ли полипептиды обладать одинаковыми свойствами?

Дата добавления: 2014-01-04 ; Просмотров: 1759 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Решение задач второго типа. Определение количества аминокислот в белке, нуклеотидов и триплетов в ДНК и РНК.

Справочная информация:

Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.

Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.

Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Пример 1. В про­цес­се транс­ля­ции участ­во­ва­ло 30 мо­ле­кул т-РНК. Опре­де­ли­те число ами­но­кис­лот, вхо­дя­щих в со­став син­те­зи­ру­е­мо­го белка, а также число три­пле­тов и нук­лео­ти­дов в гене, ко­то­рый ко­ди­ру­ет этот белок.

Элементы ответа:

1) Одна т-РНК транс­пор­ти­ру­ет одну ами­но­кис­ло­ту. Так как в син­те­зе белка участ­во­ва­ло 30 т-РНК, белок со­сто­ит из 30 ами­но­кис­лот.

2) Одну ами­но­кис­ло­ту ко­ди­ру­ет три­плет нук­лео­ти­дов, зна­чит, 30 ами­но­кис­лот ко­ди­ру­ет 30 три­пле­тов.

3) Три­плет со­сто­ит из 3 нук­лео­ти­дов, зна­чит ко­ли­че­ство нук­лео­ти­дов в гене, ко­ди­ру­ю­щем белок из 30 ами­но­кис­лот, равно 30х3=90.

Пример 2. В био­син­те­зе по­ли­пеп­ти­да участ­ву­ют мо­ле­ку­лы т-РНК с ан­ти­ко­до­на­ми УГА, АУГ, АГУ, ГГЦ, ААУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин (А), гу­а­нин (Г), тимин (Т), ци­то­зин (Ц) в двух­це­по­чеч­ной мо­ле­ку­ле ДНК. Ответ по­яс­ни­те.

Элементы ответа:

1) и-РНК: АЦУ – УАЦ – УЦА – ЦЦГ – УУА (по прин­ци­пу ком­пле­мен­тар­но­сти).

2) ДНК: 1-ая цепь: ТГА – АТГ – АГТ – ГГЦ – ААТ

2-ая цепь: АЦТ – ТАЦ –ТЦА –ЦЦГ — ТТА

3) ко­ли­че­ство нук­лео­ти­дов: А — 9 (30%), Т — 9 (30%),

так как А=Т; Г — 6 (20%), Ц — 6 (20%), так как Г=Ц.

Пример 3.и-РНК со­сто­ит из 156 нук­лео­ти­дов. Опре­де­ли­те число ами­но­кис­лот, вхо­дя­щих в ко­ди­ру­е­мый ею белок, число мо­ле­кул т-РНК, участ­ву­ю­щих в про­цес­се био­син­те­за этого белка, и ко­ли­че­ство три­пле­тов в гене, ко­ди­ру­ю­щем пер­вич­ную струк­ту­ру белка. Объ­яс­ни­те по­лу­чен­ные ре­зуль­та­ты.

Элементы ответа:

1. Белок со­дер­жит 52 ами­но­кис­ло­ты, т. к. одну ами­но­кис­ло­ту ко­ди­ру­ет один три­плет (156:3).

2. т-РНК транс­пор­ти­ру­ет к месту син­те­за белка одну ами­но­кис­ло­ту, сле­до­ва­тель­но, всего в син­те­зе участ­ву­ют 52 т-РНК.

3. В гене пер­вич­ную струк­ту­ру белка ко­ди­ру­ют 52 три­пле­та, так как каж­дая ами­но­кис­ло­та ко­ди­ру­ет­ся одним три­пле­том.

Пример 4. Ген со­дер­жит 1500 нук­лео­ти­дов. В одной из цепей со­дер­жит­ся 150 нук­лео­ти­дов А, 200 нук­лео­ти­дов Т, 250 нук­лео­ти­дов Г и 150 нук­лео­ти­дов Ц. Сколь­ко нук­лео­ти­дов каж­до­го вида будет в цепи ДНК, ко­ди­ру­ю­щей белок? Сколь­ко ами­но­кис­лот будет за­ко­ди­ро­ва­но дан­ным фраг­мен­том ДНК?

Элементы ответа:

1) В ко­ди­ру­ю­щей цепи ДНК в со­от­вет­ствии с пра­ви­лом ком­пле­мен­тар­но­сти нук­лео­ти­дов будет со­дер­жать­ся: нук­лео­ти­да Т — 150, нук­лео­ти­да А — 200, нук­лео­ти­да Ц — 250, нук­лео­ти­да Г — 150. Таким об­ра­зом, всего А и Т по 350 нук­лео­ти­дов, Г и Ц по 400 нук­лео­ти­дов.

2) Белок ко­ди­ру­ет­ся одной из цепей ДНК.

3) По­сколь­ку в каж­дой из цепей 1500/2=750 нук­лео­ти­дов, в ней 750/3=250 три­пле­тов. Сле­до­ва­тель­но, этот уча­сток ДНК ко­ди­ру­ет 250 ами­но­кис­лот.

Пример 5. Фрагмент молекулы и-РНК состоит из 87 нуклеотидов. Определите число нуклеотидов двойной цепи ДНК, число триплетов матричной цепи ДНК и число нуклеотидов в антикодонах всех т-РНК, которые участвуют в синтезе белка. Ответ поясните.

Элементы ответа:

1) двойная цепь ДНК содержит 87 х 2 = 174 нуклеотида, так как молекула ДНК состоит из двух цепей;

Читайте так же:  Протеин и жиросжигатель вместе

2) матричная цепь ДНК содержит 87: 3 = 29 триплетов, так как триплет содержит три нуклеотида;

3) в антикодонах всех т-РНК содержится 87 нуклеотидов.

Пример 6.Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок из 520 аминокислот? Какую он имеет длину (расстояние между нуклеотидами в ДНК составляет 0,34 нм)? Какое время понадобиться для синтеза этого белка, если скорость передвижения рибосомы по и-РНК составляет 6 триплетов в секунду?

Элементы ответа:

1) одну аминокислоту кодирует тройка нуклеотидов — число нуклеотидов в двух цепях: 520 х 3 х 2 = 3120;

2) длина гена: 1560 х 0,34 = 530,4 нм (определяется по одной цепи, так как цепи располагаются параллельно);

3) время синтеза: 1560 : 6 = 260 с (4,3 мин.).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8784 —

| 7163 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Количество аминокислот в молекуле белка

В молекуле белка аминокислотные остатки соединены так называемой пептидной связью. Полная последовательность аминокислотных остатков в такой цепи называется первичной структурой белка. Число остатков в разных белках может колебаться от нескольких штук до нескольких тысяч. Небольшие молекулы с мол. массой менее 10 тыс. дальтон называют пептидами, а крупные – белками. В составе белка обычно имеются как кислые, так и щелочные аминокислоты, так что белковая молекула имеет и положительные, и отрицательные заряды. Значение рН, при котором количество отрицательных зарядов равно количеству положительных, называется изоэлектрической точкой белка.

Обычно белковая цепочка складывается в более сложные структуры. Кислород группы C=O может образовывать водородную связь с водородом группы N–H, расположенной в другой аминокислоте. За счет таких водородных связей формируется вторичная структура белка. Одна из разновидностей вторичной структуры – α-спираль. В ней каждый кислород С=О-группы связан с водородом 4-й по ходу спирали NH-группы. На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали составляет 0,54 нм.

Во многих белках имеется т. н. β-структура, или β-слой, в ней полипептидные цепочки почти полностью развернуты, их отдельные участки своими группами –СО– и –NH– образуют водородные связи с другими участками той же цепочки или соседней полипептидной цепи.

α-Спиральную структуру имеет белок кератин, из которого состоят волосы и шерсть. При нагревании влажные волосы и шерсть легко поддаются растяжению, а потом самопроизвольно возвращаются к исходному состоянию: при растяжении водородные связи α-спирали разрываются, а затем постепенно восстанавливаются.

β-Структура характерна для фиброина – основного белка шелка, выделяемого гусеницами шелкопряда. В отличие от шерсти, шелк почти нерастяжим – β-структура образована вытянутыми полипептидными цепями, и дальше растягивать ее практически невозможно без разрыва ковалентных связей.

Укладка белков обычно не ограничивается вторичной структурой. Гидрофобные аминокислотные остатки «стремятся» укрыться от водного окружения внутри белковой молекулы. Между боковыми группами кислых и щелочных аминокислот, заряженных, соответственно, отрицательно и положительно, возможно электростатическое взаимодействие. Многие аминокислотные остатки могут образовывать друг с другом водородные связи. Наконец, остатки аминокислоты цистеина, содержащие SH-группы, способны образовывать между собой ковалентные связи –S–S–.

Благодаря всем этим взаимодействиям – гидрофобным, ионным, водородным и дисульфидным – белковая цепочка образует сложную пространственную конфигурацию, называемую третичной структурой.

В составе глобулы у многих белков можно различить отдельные компактные участки размером около 10–20 тысяч дальтон. Они называются доменами. Участки полипептидной цепи между доменами весьма гибки, так что всю структуру можно представить как относительно жесткие бусины доменов, соединенные гибкими промежуточными участками первичной структуры.

Многие белки (их называют олигомерными) состоят не из одной, а из нескольких полипептидных цепочек. Совокупность их образует четвертичную структуру белка, при этом отдельные цепочки называются субъединицами. Четвертичная структура удерживается теми же связями, что и третичная. Пространственная конфигурация белка (т. е. его третичная и четвертичная структура) называется конформацией.

Главным методом, позволяющим устанавливать пространственную структуру белков и других биологических полимеров, является рентгеноструктурный анализ. В последнее время большие успехи достигнуты в компьютерном моделировании белковых конформаций.

Водородные, электростатические и гидрофобные связи, с помощью которых создаются вторичная, третичная и четвертичная структуры белка, менее прочны, чем пептидная связь, образующая первичную структуру. При нагревании они легко разрушаются, и хотя у белка сохраняется в целости первичная структура, он не может выполнять своих биологических функций, становится неактивным. Процесс разрушения природной конформации белка, сопровождающийся потерей активности, называется денатурацией. Денатурацию вызывает не только нагревание, но и химические вещества, нарушающие связи вторичной и третичной структур – например, мочевина, которая в высоких концентрациях разрушает водородные связи в белковой глобуле.

Дисульфидные –S–S-связи образуют прочные «скрепы», сшивающие различные участки одной полипептидной цепи или разные цепи. Эти связи имеются, например, в кератинах, причем разные кератины содержат разное количество таких сшивок: волосы и шерсть – немного, рога, копыта млекопитающих и панцири черепах – значительно больше.

Вторичная, третичная и четвертичная структура белка определяется его первичной структурой. В зависимости от последовательности аминокислот в полипептидной цепочке будут образовываться α-спиральные или β-структурные участки, которые затем самопроизвольно «уложатся» в определенную третичную структуру, а у некоторых белков отдельные цепочки еще и объединятся с образованием четвертичной структуры.

Если изменить первичную структуру белка, то может сильно измениться и вся его конформация. Существует тяжелая наследственная болезнь – серповидно-клеточная анемия, при которой гемоглобин становится малорастворим в воде, а эритроциты приобретают серповидную форму. Причина болезни – замена всего лишь одной аминокислоты из 574, входящих в состав человеческого гемоглобина (глютаминовая кислота, расположенная на 6-м месте с N-конца одной из цепей гемоглобина нормальных людей, у больных заменена на валин).

Процесс самопроизвольной ассоциации белковых субъединиц в сложные комплексы, обладающие четвертичной структурой, называется самосборкой. Большинство белковых комплексов с четвертичной структурой образуются именно путем самосборки.

В 1980-е годы было обнаружено, что не все белки и белковые комплексы образуются путем самосборки. Оказалось, что для образования таких структур как нуклеосомы (комплексы белков-гистонов с ДНК), бактериальные ворсинки – пили, а также некоторых сложных ферментных комплексов используются специальные белки–помощники, названные шаперонами. Шапероны не входят в состав образующейся структуры, а только помогают ее укладке.

Шапероны служат не только для организации сложных комплексов, но в некоторых случаях помогают правильно свернуть одну полипептидную цепочку. Так, при воздействии высокой температуры в клетках резко возрастает количество т. н. белков теплового шока. Они связываются с частично денатурированными клеточными белками и восстанавливают их природную конформацию.

Долгое время считалось, что белок может иметь только одну устойчивую конформацию при данных условиях, но в последнее время этот постулат пришлось пересмотреть. Поводом к такому переосмыслению послужило открытие возбудителей т. н. медленных нейрологических инфекций. Эти инфекции встречаются у разных видов млекопитающих. К ним относится болезнь овец «скрепи», заболевание человека «куру» («смеющаяся смерть») и нашумевшее в последнее время «бешенство коров». Они имеют много общего.

Читайте так же:  Смешивать протеин с креатином

Для них характерны тяжелые поражения центральной нервной системы. Так, люди, больные куру, на ранних стадиях болезни испытывают эмоциональную неустойчивость (большинство – часто и беспричинно смеются, но некоторые находятся в состоянии депрессии или немотивированной агрессивности) и легкие нарушения координации движений. На поздних стадиях больные уже не способны не только двигаться, но даже сидеть без поддержки, а также есть.

Заражение обычно происходит пищевым путем (изредка через кровь). Болезнь у животных развивалась после скармливания им костной муки, которая изготавливалась из костей больных особей. Куру – болезнь папуасских людоедов, передающаяся при поедании мозга умерших родичей (поедание друг друга в этом случае – скорее отрасль богослужения, чем кулинарии, оно имеет важное ритуальное значение).

Все эти заболевания имеют очень длительный инкубационный период и развиваются медленно. В головном мозге заболевших отмечается отложение нерастворимого белкового конгломерата. Нерастворимые белковые нити обнаруживаются в пузырьках, расположенных внутри нейронов, а также во внеклеточном веществе. Наблюдается разрушение нейронов в некоторых отделах мозга, особенно в мозжечке.

Долгое время оставалась загадочной природа возбудителей этих заболеваний, и только в начале 80-х годов было установлено, что эти возбудители – особые белки с молекулярной массой около 30 тысяч дальтон. Такие доселе неизвестные науке объекты получили название прионы.

Было установлено, что прионный белок закодирован в ДНК организма-«хозяина». Белок здорового организма содержит ту же последовательность аминокислот, что и белок инфекционной частицы приона, но никаких патологических симптомов не вызывает. Функция прионного белка пока неизвестна. Мыши, у которых генные инженеры искусственно выключили ген этого белка, развивались вполне нормально, хотя и имели некоторые отклонения в работе центральной нервной системы (худшее обучение, нарушения сна). В здоровом организме этот белок обнаружен на поверхности клеток во многих органах, больше всего в головном мозге.

Оказалось, что в инфекционной частице прионный белок имеет иную конформацию, чем в нормальных клетках. Он содержит бета-структурные участки, обладает высокой устойчивостью к расщеплению пищеварительными ферментами и способностью образовывать нерастворимые агрегаты (видимо, отложение таких агрегатов в мозге и является причиной развития нейропатологии).

Самое интересное, что «нормальная» конформация этого белка превращается в «болезнетворную», если клетка контактирует с «болезнетворным» белком. Получается, что «болезнетворный» белок «лепит» пространственную структуру «нормального» по себе. Он направляет его укладку как матрица, вызывая появление все большего числа молекул в «болезнетворной» конформации и, в конце концов, гибель организма.

Как именно это происходит, до сих пор неизвестно. Если смешать в пробирке нормальную и инфекционную форму прионного белка, то никакого образования новых инфекционных молекул не произойдет. По-видимому, в живой клетке имеются какие-то молекулы-помощники (вероятно, шапероны), позволяющие прионному белку делать свое черное дело.

Отложение нерастворимых белковых конгломератов может служить причиной и других неизлечимых нервных заболеваний. Болезнь Альцгеймера не относится к числу инфекционных – она возникает в пожилом и старческом возрасте у людей с наследственной предрасположенностью. У больных наблюдается ухудшение памяти, ослабление интеллекта, слабоумие, и, в конце концов – полная утрата психических функций. Причина развития болезни – отложение в мозгу т. н. амилоидных бляшек. Они состоят из нерастворимого белка – β-амилоида. Он представляет собой фрагмент белка–предшественника амилоида – нормального белка, присутствующего у всех здоровых людей. У больных он расщепляется с образованием нерастворимого амилоидного пептида.

Мутации в разных генах вызывают развитие болезни Альцгеймера. Естественно, ее вызывают мутации в гене белка–предшественника амилоида – измененный предшественник после расщепления образует нерастворимый β-амилоид, формирующий бляшки и разрушающий клетки головного мозга. Но болезнь возникает и при мутации в генах белков, регулирующих активность протеаз, разрезающих белок – предшественник амилоида. Не совсем понятно, как в этом случае развивается заболевание: возможно, нормальный белок предшественник режется в каком-то неправильном месте, что приводит к выпадению в осадок образующегося пептида.

Очень рано болезнь Альцгеймера развивается у больных с синдромом Дауна – у них содержится не две копии 21-й хромосомы, как у всех людей, а три. Больные синдромом Дауна имеют характерную внешность и слабоумие. Дело в том, что ген белка–предшественника амилоида как раз и находится в 21-й хромосоме, увеличение количества гена приводит к увеличению количества белка, а избыток белка–предшественника приводит к накоплению нерастворимого β-амилоида.

Белки часто соединяются с другими молекулами. Так, гемоглобин, переносящий кислород в кровеносной системе, состоит из белковой части – глобина, и небелковой – гема. Ион Fe 2+ входит в состав гема. Глобин состоит из четырех полипептидных цепочек. Благодаря наличию гема с железом гемоглобин катализирует окисление перекисью водорода различных органических веществ – например, бензидина. Раньше эта реакция под названием «бензидиновая проба» использовалась в судебно-медицинской экспертизе для обнаружения следов крови.

Некоторые белки химически связаны с углеводами, их называют гликопротеины. Очень многие белки, секретируемые животной клеткой, являются гликопротеинами – например, известные по предыдущим разделам трансферрин и иммуноглобулины. Однако, желатин, хотя и является продуктом гидролиза секретируемого белка коллагена, практически не содержит присоединенных углеводов. Внутри клетки гликопротеины встречаются гораздо реже.

[3]

Видео (кликните для воспроизведения).

В лабораторной практике используется много методов определения концентрации белка. В самом простом из них применяется биуретовый реактив – щелочной раствор соли двухвалентной меди. В щелочной среде некоторая часть пептидных связей в молекуле белка переходит в енольную форму, которая образует с двухвалентной медью комплексы, окрашенные в красный цвет. Другой распространенной реакцией на белок является окраска по Бредфорду. В ходе реакции молекулы специального красителя связываются с белковой глобулой, что вызывает резкое изменение окраски – из бледно-коричневого раствор становится ярко-синим. Это краситель – «кумасси ярко-синий» – раньше использовался для окраски шерсти (а шерсть, как известно, состоит из белка кератина). Наконец, для определения концентрации белка можно использовать его свойство поглощать ультрафиолетовый свет с длиной волны 280 нм (его поглощают ароматические аминокислоты фенилаланин, тирозин и триптофан). Чем сильнее раствор поглощает такой ультрафиолет, тем больше там содержится белка.

Источники


  1. Вайз, Елена Худеем с легкостью. Диетические тайны. Здоровое питание (комплект из 3 книг) / Елена Вайз , Наталья Герасимова , Рудигер Дальке. — М.: ИГ «Весь», 2013. — 888 c.

  2. Булынко, С.Г. Диета и лечебное питание при ожирении и сахарном диабете / С.Г. Булынко. — Москва: Мир, 2004. — 256 c.

  3. Смолянский, Б.Л. Диетология: Новейший справочник для врачей: Биологически активные добавки; Лечебные и разгрузочные диеты; Продуктовые нормы и взаимозаменяемость продуктов; Особенности питания при фармакотерапии / Б.Л. Смолянский, В.Г. Лифляндский. — Москва: Наука, 2004. — 816 c.
  4. Гимнастика тибетских монахов. — М.: Физкультура и спорт, 1997. — 158 c.
  5. Денисов, М. Ю. Болезни органов пищеварения у детей и подростков / М.Ю. Денисов. — М.: Феникс, 2005. — 608 c.
Количество аминокислот в молекуле белка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here