Метаболизм белков и аминокислот

Сегодня предлагаем ознакомится со статьей на тему: метаболизм белков и аминокислот с профессиональным описанием и объяснением.

Метаболизм белков и аминокислот

Всасывание аминокислот сопровождается значительным потреблением энергии, источником которой является АТФ. Это необходимо учитывать спортсменам в режиме тренировочного процесса. Есть мясо за 2 — 3 часа до соревнования нельзя, так как на переваривание белков пищи израсходуется АТФ, и высоких результатов достичь будет нельзя.

Всосавшиеся аминокислоты подвергаются различным внутриклеточным превращениям: помимо синтеза белков аминокислоты используются еще и для синтеза ряда небелковых соединений, имеющих важное биологическое значение. Так, из аминокислот синтезируются глюкоза, азотистые основания, небелковая часть гемоглобина (гем), гормоны адреналин, тироксин и очень важное соединение, участвующее в энергообеспечении мышечной работы, — креатин.

При избыточном поступлении белков с пищей часть аминокислот из желудка не успевает попасть в кровь и с непереваренными белками подвергается воздействию микрофлоры нижних отделов кишечника (гнилостных микроорганизмов). В результате образуются ядовитые вещества — амины, фенолы, индол, скатол, меркаптан, которые попадают в печень, там обезвреживаются и удаляются из организма с мочой.

Часть аминокислот подвергается распаду и превращается в конечные продукты: С O 2, Н2 O и N H 3. Распад начинается с реакций, общих для большинства аминокислот. К ним относятся декарбоксилирование, дезаминирование и трансаминирование (переаминирование).

Декарбоксилирование — отщепление от аминокислот карбоксильной группы в виде углекислого газа.

Дезаминирование — отщепление аминогруппы в виде N H 3.

У человека дезаминирование аминокислот идет окислительным путем.

Трансаминирование (переаминирование) — реакция между аминокислотами и α — кетокислотами, в ходе которой ее участники обмениваются функциональными группами, при этом аминокислота превращается в а-кетокислоту, а кетокислота становится аминокислотой.

Трансаминированию подвергаются все аминокислоты. В этой реакции участвует кофермент — фосфопиридоксаль, для образования которого необходим витамин В6 — пиридоксин.

Трансаминирование — это главное превращение аминокислот в организме, так как его скорость значительно выше, чем у реакций декарбоксилирования и дезаминирования.

Данная реакция выполняет две основные функции.

1. За счет трансаминирования одни аминокислоты превращаются в другие. При этом общее количество аминокислот не меняется, но изменяется соотношение между ними. С пищей в организм поступают чужеродные белки, у которых аминокислоты находятся в иных пропорциях по сравнению с белками организма. Путем трансаминирования в организме происходит корректировка соотношения аминокислот.

2. Трансаминирование является составной частью косвенного (непрямого) дезаминирования аминокислот — процесса, с которого начинается распад большинства аминокислот. На первой стадии этого процесса аминокислоты вступают в реакцию трансаминирования с α — кетоглутаровой кислотой (α — кетокислотой). Аминокислоты при этом превращаются в а-кетокислоты, а α — кетоглутаровая кислота переходит в глутаминовую кислоту (α — аминокислоту). На второй стадии образовавшаяся глутаминовая кислота подвергается дезаминированию, от нее отщепляется аммиак (N H 3), и снова образуется а-кетоглутаровая кислота.

Косвенное дезаминирование аминокислот

Суммарное уравнение косвенного дезаминирования совпадает с уравнением прямого дезаминирования:

Отсюда следует, что реакцией, с которой начинается распад аминокислот в организме, является трансаминирование.

Образовавшиеся в ходе косвенного дезаминирования а-кетокислоты далее подвергаются глубокому распаду и превращаются в конечные продукты СО2 и Н2 O . Для каждой из 20 кетокислот (их образуется столько же, сколько видов аминокислот имеется) существуют свои специфические пути распада. Однако при распаде некоторых аминокислот в качестве промежуточного продукта синтезируется пировиноградная кислота, из которой возможен синтез глюкозы. Поэтому аминокислоты, из которых возникает пировиноградная кислота, получили название глюкогенные. Другие же кетокислоты при распаде пируват не образуют, промежуточным продуктом у них является ацетил- кофермент А, из которого глюкоза не синтезируется, но зато могут синтезироваться кетоновые тела. Аминокислоты, соответствующие таким кетокислотам, называются кетогенными.

Второй продукт косвенного дезаминирования аминокислот — аммиак. Для организма аммиак является высокотоксичным соединением. Образование аммиака усиливается при мышечной деятельности, возбуждении ЦНС. В организме есть молекулярные механизмы его обезвреживания.

Метаболизм аминокислот и белков

Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутамино-вой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глу-тамином и трипептидом глутатионом приходится более 50% α-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это γ-аминомасляная кислота, N-ацетиласпарагиновая кислота и цистатионин (см. главу 1).

Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник «сырья» для синтеза белков и биологически активных аминов. Одна из функций дикарбоновых аминокислот в головном мозге – связывание аммиака, освобождающегося при возбуждении нервных клеток.

Поступления аминокислот в мозговую ткань и выход из нее, а также использование глюкозы крови для синтеза аминокислот нейронов и глии в разных отделах мозга различны. Эти различия в существенной мере обусловлены наличием гематоэнцефалического барьера, который следует рассматривать конкретно для каждого вещества или класса веществ. Ге-матоэнцефалический барьер не следует представлять как единое структурное образование, создающее преграду для транспорта; различие относительно скоростей поступления веществ в разные отделы мозга может быть обусловлено особенностями эпителия сосудов, базальной мембраны или расположения прилегающих отростков глиальных клеток. В условиях in vitro (в отсутствие барьера) многие аминокислоты накапливаются в клетках мозга за счет активного транспорта, в котором участвует несколько самостоятельных Na + -зависимых транспортных систем.

[1]

Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами – аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше.

При различных функциональных состояниях ЦНС наступают изменения в интенсивности обновления белков. Так, при действии на организм животных возбуждающих агентов (фармакологические средства и электрический ток) в головном мозге усиливается интенсивность обмена белков. Под влиянием наркоза скорость распада и синтеза белков снижается.

Читайте так же:  Определение креатина в крови

Возбуждение нервной системы сопровождается повышением содержания аммиака в нервной ткани. Это явление наблюдается как при раздражении периферических нервов, так и при раздражении мозга. Считают, что образование аммиака при возбуждении в первую очередь происходит за счет дезаминирования АМФ.

Аммиак – очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина – безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани – путь восстановительного аминирования α-кетоглутаровой кислоты;

Образование глутаминовой кислоты из α-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли.

Кроме того, глутаминовая кислота в нервной ткани может декарбокси-лироваться с образованием ГАМК:

ГAMК в наибольшем количестве содержится в сером веществе головного мозга. В спинном мозге и периферических нервах ее значительно меньше.

Метаболизм аминокислот и белков

Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканя млекопитающих. Это у-аминомасляная кислота, N-ацетиласпарагиновая кислота и цистатионин.

Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник «сырья» для синтеза белков и биологически активных аминов. Одна из функций дикарбоновых аминокислот в головном мозге-связывание аммиака, освобождающегося при возбуждении нервных клеток.

Поступления аминокислот в мозговую ткань и выход из нее, а также использование глюкозы крови для синтеза аминокислот нейронов и глии

в разных отделах мозга различны. Эти различия в существенной мере обусловлены наличием гематоэнцефалического барьера, который следует рассматривать конкретно для каждого вещества или класса веществ. Ге-матоэнцефалический барьер не следует представлять как единое структурное образование, создающее преграду для транспорта; различие относительно скоростей поступления веществ в разные отделы мозга может быть обусловлено особенностями эпителия сосудов, базальной мембраны или расположения прилегающих отростков глиальных клеток. В условиях in vitro (в отсутствие барьера) многие аминокислоты накапливаются в клетках мозга за счет активного транспорта, в котором участвует несколько самостоятельных Na + -зависимых транспортных систем.

Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами-аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше.

[3]

При различных функциональных состояниях ЦНС наступают изменения в интенсивности обновления белков. Так, при действии на организм животных возбуждающих агентов (фармакологические средства и электрический ток) в головном мозге усиливается интенсивность обмена белков. Под влиянием наркоза скорость распада и синтеза белков снижается.

Возбуждение нервной системы сопровождается повышением содержания аммиака в нервной ткани. Это явление наблюдается как при раздражении периферических нервов, так и при раздражении мозга. Считают, что образование аммиака при возбуждении в первую очередь происходит за счет дезаминирования АМФ.

Аммиак-очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина-безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани-путь восстановительного аминирования а-кетоглутаровой кислоты:Образование глутаминовой кислоты из а-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли.

Кроме того, глутаминовая кислота в нервной ткани может декарбоксилироваться с образованием ГАМК:

ГАМК в наибольшем количестве содержится в сером веществе головного мозга. В спинном мозге и периферических нервах ее значительно меньше.

Метаболизм аминокислот

Фонд АК организма пополняется за счет процессов:

1) гидролиза белков пищи,

2) гидролиза тканевых белков (под действием катепсинов лизосом).

Расходуется АК-фонд на процессы:

 синтез заменимых АК,

 синтез собственных белков,

 синтез азотсодержащих веществ (урины, пиримидины, холин, креатин и т.д.),

 синтез углеводов (глюконеогенез),

 синтез липидов из кетогенных АК,

Условно метаболизм АК в тканях можно распределить на общие пути и индивидуальные пути обмена АК.

Общие пути обмена веществ

1. Переаминирование (открыто в 1937 г. Браунштейном и Крицмом).

Роль: синтез заменимых АК, участие в непрямом дезаминировании АК. Определение АлАТ и АсАТ в крови имеет большое диагностическое значение. Так, через 5 часов после инфаркта миокарда АсАТ увеличивается в 20-30 раз, через 48 часов – АлАТ и АсАТ снижаются до нормы, еще через 24 часа повышается АлАТ. Также АлАТ повышается при патологии печени.

2. Дезаминирование (ДА) АК:

 восстановительное ДА – под действием микрофлоры кишечника,

 гидролитическое ДА – с участием воды,

 внутримолекулярное ДА – с образованием непредельной к-ты,

 окислительное ДА – характерно для тканей организма. Оно бывает прямым и непрямым.

Прямое ДА идет с участием дезаминаз (оксидаз). NH2-CHR-COOH → NH=CR-COOH (иминокислота), при этом ФМН→ФМН·Н2, который затем восстанавливает кислород до пероксида водорода; последний расщепляется каталазой. А иминокислота гидролизуется до альфа-кетокислоты и аммиака.

[2]

Непрямое ДА (или транс-ДА) идет в два этапа: 1) переаминирование (см. выше); 2) дезаминирование ГЛУ α-КГ + NH3, над стрелочкой глутамат-ДГ, под стрелочкой – НАД→НАД·Н2.

3. Декарбоксилирование АК – процессы образования биогенных аминов, обладающих биологической активностью:

Читайте так же:  Л карнитин и велосипед

ГИС → (гистидил-ДК, ПФ) гистамин,

ТИР → (оксигеназа, +1/2О2) ДОФА (диоксифенилаланин) → (ДК, ПФ, -СО2)дофамин,

ТРИ → (оксигеназа, +1/2О2) 5-окситриптофан → (ДК, ПФ, -СО2) серотонин,

ГЛУ → гамма-аминомасляная к-та (ГАМК).

Дофамин и ГАМК – тормозные нейромедиаторы, гистамин – тканевой гормон. Серотонин является местным регулятором в функции периферических органов.

Образование конечных азотистых продуктов

В сутки распадается около 1-2% всех белков организма, что составляет в среднем 500 г. Из них 80% (400 г) идут на ресинтез организм-специфичных белков, а 20% (100 г) подвергаются непрямому дезаминированию с образованием конечных продуктов – кетокислот и аммиака (они содержат 10-16 г азота).

Временное обезвреживание аммиака

Аммиак токсичен (50 мг аммиака убивает кролика, при этом [NH3]=0,4-0,7 мг/л). Поэтому в тканях аммиак обезвреживается временными путями:

1) в основном – образованием амидов дикарбоновых кислот. Напр., ГЛУ + NH3 → ГЛН (над стрелочкой «глутаминсинтетаза», под стрелочкой – АТФ → АДФ + Фн). Аналогично АСП → АСН.

2) восстановительное аминирование кетокислот. Этот путь и дает токсичность аммиака (из-за уменьшения кол-ва кетокислот).

Такой азот (в виде конъюгатов аммиака) посупает в печень, где происходит окончательное обезвреживание аммиака – образование мочевины. Небольшое количество аминов отдают аммиак в почках, где он сразу синтезируется в мочу, где соединяется с протонами, образуя ионы аммония, которые выводятся с мочой. (В крови NH4+ нет!)

Метаболизм белков и аминокислот в мышцах

Метаболизм АКРУЦ в мышцах

nМышцы – наиболее важный участок деградации аминокислот с разветвленной углеводородной цепью (АКРУЦ): вал, иле, лей.

¨Эти соединения катаболизируют до сукцинил-КоА (иле, вал) и ацетил-КоА (лей).

Механизм электромеханического сопряжения

Особенности биохимии миокарда

n Аэробная ткань (7-20% всего кислорода) Þ аэробные изоферменты.

¨ КФК2 (MB-изоформа).

N Высокая скорость ЦТК, b-окисления ЖК, очень низкая – анаэробного гликолиза.

N Энергосубстраты – ЖК, глюкоза, лактат. Кетоновые тела.

¨ Особенно активно из крови миокард извлекает ненасыщ. ЖК – олеиновую кислоту.

n Интенсивный метаболизм АМК Þ АлАТ, АсАТ.

n СР развит хорошо, однако Ca 2+ поступает из внеклеточной среды.

N На сарколемме высокая активность АТФ-аз.

Заболевания мышц

Миозин, актин, тропомиозин и тропонин вместе составляют три четверти всех белков, сосредоточенных в мышечных волокнах. Оставшаюся долю составляют более 20 других белков. Они осуществляют такие функции как прикрепление и организация нитей в саркомере, связывание саркомера с плазматической мембраной и внеклеточным матриксом. Мутации генов, которые кодируют эти белки, приводят к различным мышечным заболеваниям.

Наиболее часто мышечные дистрофии развиваются вследствие мутации гена, кодирующего белок — дистрофин.

Ген дистрофина огромен по размеру. Он содержит 79 экзонов, состоящих из 2,3 миллионов пар нуклеотидов. То есть, один этот ген занимает 0,1% всего человеческого генома (3 х 10 9 пар нуклеотидов) и почти половину генома E.coli.

Вероятно, такие большие размеры делают этот ген чрезвычайно подверженным делециям. Если мутация такого рода приводит к изменению рамки считывания генома, дистрофин не будет синтезироваться. В таком случае развивается очень тяжелое заболевание, известное под названием «мышечная дистрофия Дюшена». Если делеция сводится только к удалению некоторых экзонов, образуется укороченный белок и развивается сравнительно мягкая форма заболевания, известного как «мышечная дистрофия Беккера». Ген дистрофина локализован на Х хромосоме, поэтому эти два заболевания поражают мужчин, унаследовавших его обычным Х-сцепленным путем.

Это аутоиммунное заболевание возникает вследствие поражения нервномышечных синапсов. У больных отмечается сниженный потенциал концевой пластинки. Повторная стимуляция приводит к тому, что этот потенциал становится слишком малым для запуска последующих событий, связанных с проведением в миоциты нервного импульса. В результате мышечные волокна прекращают сокращаться. Назначение ингибитора ацетилхолинэстеразы постепенно может восстановить сократимость за счет того, что больше ацетилхолина будет оставаться в синапсе.

У больных миастенией гравис количество рецепторов к ацетилхолину в нервномышечных синапсах составляет только 20% от нормального. Получены доказательства того, что потеря рецепторов обусловлена выработкой в организме аутоиммунных антител к ацетилхолиновым рецепторам. Однако до настоящего времени неизвестны причины, по которым у человека начинают вырабатываться эти антитела.

Сердечные миопатии

Сердечная мышца, подобно скелетным мышцам, содержит в своем составе, вдобавок к актину и миозину, множество белков. Мутации их генов могут приводить к ослаблению стенки сердечной мышцы и, благодаря этому, расширению сердца. Тяжесть состояния зависит от конкретной мутации (к настоящему времени их известно более 100). Некоторые мутации достаточно опасны, поскольку они могут привести к внезапному развитию тяжелой сердечной недостаточности у молодых людей, которые кажутся здоровыми и активными.

Метаболизм белков и аминокислот

Роль белков и аминокислот в жизнедеятельности.

Одно из определений гласит: «Жизнь — это способ существования беловых тел». Тем самым подчеркивается, что белки и их обмен незаменимы для нормального функционирования организма и всех процессов, протекающих в нем (рис. 9.6).

Роль аминокислот в организме определяется в первую очередь тем, что они служат предшественниками при синтезе белков и других биологически активных соединений.

Стабильность химического состава (гомеостаз) здорового организма является результатом равновесия между скоростями синтеза и распада его составляющих. Организм высших животных активно окисляет как экзогенные аминокислоты, источником которых служат перевариваемые пищевые белки, так и эндогенные аминокислоты, образующиеся в процессе метаболического обновления белков самого организма.

Направленность и интенсивность обмена белков определяется физиологическим состоянием организма и регулируется, как и все другие виды обмена, деятельностью ЦНС.

Наиболее интенсивно обмен белков протекает в детском возрасте, при беременности и лактации, а также при активной мышечной работе, т.е. в тех случаях, когда резко повышается потребность в белках.

Существенное влияние на белковый обмен оказывает характер питания, и в частности количественный и качественный состав пищи.

Таким образом, уровень белкового обмена определяется множеством факторов, как экзогенных, так и эндогенных. Любые отклонения от нормального физиологического состояния организма отражаются на азотистом обмене.

Знание закономерностей изменений метаболизма белков — важная предпосылка для выбора рациона питания и схемы тренировок для достижения высоких результатов.

Видео удалено.
Видео (кликните для воспроизведения).

Рис. 9.6. Общая схема метаболизма аминокислот

Читайте так же:  Креатин порошок или капсулы

Знание закономерностей изменений обмена белков при различных болезнях — также необходимая предпосылка для правильной диагностики и выбора тактики терапевтических мероприятий по устранению нарушений процесса обмена.

Молекулы белка и большинства олигопептидов не могут проходить через мембраны клеток слизистой оболочки кишечника. В то же время аминокислоты свободно проходят через них. Поэтому, чтобы аминокислоты белков могли включиться в метаболизм, белки должны гидролизоваться до аминокислот.

У млекопитающих гидролиз белков начинается под действием желудочного сока, pH которого лежит в пределах 1,0-1,5. Активным началом при этом является протеолитический фермент пепсин, выделяемый клетками слизистой оболочки желудка в форме неактивного предшественника (зимогена) пепсиногена. Пепси- ноген (молярная масса 40 000 г/моль) под действием соляной кислоты НС1, содержащейся в желудочном соке, превращается в пепсин (молярная масса 32 700 г/моль). Из желудочного сока выделен также еще один протеолитический фермент — гастриксин.

Образующиеся в результате гидролиза полипептиды из желудка попадают в тонкий кишечник. Показатель кислотности среды кишечника поддерживается в пределах pH 7-8.

В кишечнике полипептиды подвергаются действию нескольких протеолитических ферментов (табл. 9.1). Некоторые из них выделяются поджелудочной железой и попадают в кишечник (через проток поджелудочной железы) в виде неактивных предшественников — трипсиногена, химотрипсиногена, прокарбоксипеп- тидаз и проэластазы. В кишечнике эти зимогены превращаются в активные формы соответствующих ферментов.

Протеолитические ферменты желудочно-кишечного тракта человека

Метаболизм аминокислот и белков

Глава 5. Особенности метаболизма в нейронах

Основная структурно-функциональная единица нервной системы – нейрон; число этих клеток составляет 10 12 -10 15 , они образуют сложные межнейрональные комплексы по функциональному принципу. Наряду с ними большую роль играют различные клетки нейроглии (астроциты, олигодендроциты, клетки эпендимы и микроглии), метаболически тесно связанные с нейронами.

Сложнейшая система межнейрональных и периферических связей осуществляется через специфические образования – синапсы, обеспечивающие передачу и модуляцию сигнала с помощью химических и электрических механизмов.

Характерная особенность нервной ткани – высокая интенсивность энергетического метаболизма.

Кислородное и энергетическое обеспечение нервной ткани

Нервная ткань, которая составляет лишь 2% от массы тела человека, поглощает 20% кислорода, поступающего в организм (а у детей до 4 лет — около 30-40%). Газообмен в сером веществе интенсивнее, чем в белом. Дыхательный коэффициент в нервных клетках (СО2/О2) равен 1. Мозг очень чувствителен к кислородному голоданию. Отсутствие кислорода в течение 5 мин вызывает необратимые в изменения мозге. Основной путь получения энергии нервных клеток – аэробное окисление глюкозы. Глюкоза является практически единственным энергетическим субстратом, поступающим в нервную ткань и не зависит от действия инсулина. Постоянное и непрерывное поступление глюкозы в клетки мозга из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Содержание гликогена в нервной ткани небольшое (составляет 0,1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время (только до 10 мин). Энергетическим материалом для клеток мозга также могут быть кетоновые тела, поскольку в нервной ткани есть ферменты для их окисления. Однако, использование кетоновых тел начинается только через 3 — 4 суток энергетического голодания.

Кроме энергии, глюкоза обеспечивает субстратами процессы биосинтеза медиаторов, аминокислот, липидов, нуклеиновых кислот. Такими субстратами являются промежуточные продукты гликолиза, ацетил-КоА (продукт окислительно декарбоксилування пирувату), α-кетокислот цикла Кребса, метаболиты пентозофосфатного цикла (рибоза-5-фосфат и НАДФН2).

Метаболизм липидов

На долю липидов приходится до 50% сухой массы нервной ткани, при этом фосфолипиды составляют около половины, а холестерол и гликолипиды примерно 25% от общего количества липидов. Для нервной ткани характерны специфические липиды: ганглиозиды, галактоцереброзиды, фосфатидилинозитолы. Среди высших жирных кислот мозга преобладают пальмитат, стеарат, олеинат, арахидонат. Обращает на себя внимание высокое содержание ганглиозидов, особенно в мембранах нервных окончаний. Специфические липидные компоненты миелина – цереброзиды и сульфоцереброзиды, много в нем плазмалогенов. Особенностью липидного спектра нервной ткани является отсутствие нейтральных жиров, низкое содержание жирных кислот, высокое содержание сложных липидов (фоcфо-и гликолипидов). Эфиры холестерина находятся только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в мозге, которая находится на стадии развития.

Основные функции липидов: пластическая — входят в состав клеточных мембран нейронов; диэлектрическая — обеспечивают надежную электрическую изоляцию за счет миелина (белково-липидного комплекса, который на 90% состоит из фосфоглицеридив, холестерина и цереброзидив); защитная: ганглиозиды являются очень активными антиоксидантами — ингибиторами перекисного окисления липидов (ПОЛ); регуляторная: инозитфосфатиды принимают участие в передаче гормонального сигнала;

В нервной ткани происходит интенсивный синтез жирных кислот, сложных липидов (глицерофосфолипидив, сфингомиелину, гликолипидив), холестерина. Синтез цереброзидов активнее в период миелинации, а синтез ганглиозидов — при дифференциации нейронов. Нарушения процессов распада сложных липидов приводит к их накоплению в мозге и развитию дегенеративных изменений нервной ткани.

Гипоксия и чрезмерные функциональные нагрузки усиливают свободнорадикальное окисление липидов нейрональных мембран, что вызывает их повреждение, приводящее к выходу из клетки ионов, биологически активных веществ (медиаторов, пептидов, ферментов и др.). Одни из них (например, лизосомальные энзимы) вызывают альтерацию соседних клеток, другие (структурные белки) играют роль вторичных антигенов. При цитотоксическом повреждении значительно страдают окислительно-восстановительные процессы.

Метаболизм аминокислот и белков

В мозгу интенсивно проходит обмен аминокислот, концентрация их в 5-10 раз выше, чем в крови. В частности достаточно высоким содержанием таких аминокислот как глутамат и глутамин.

Метаболизм аминокислот в нервной ткани имеет ряд специфических черт. Эти вещества широко используются для синтеза белков, пептидов, нейромедиаторов и других биологически активных веществ. Некоторые аминокислоты сами служат нейромедиаторами (глицин, глутаминовая кислота). Головной мозг характеризуется высокой концентрацией аминокислот глутаминовой группы. Глутамат, аспартат, N-ацетиласпартат, ГАМК составляют 75% пула свободных аминокислот. Эти соединения выполняют особую роль. Кроме нейромедиаторов, они могут служить источниками энергии, участвовать в обезвреживании аммиака. Вследствие высокой интенсивности этих процессов глутаминовая кислота, подвергаясь реакциям переаминирования, преобразуется в α-кетоглутарат – метаболит цикла трикарбоновых кислот.

Соли глутамата используются в качестве пищевой приправы, но у некоторых лиц регистрируется повышенная чувствительность к нему (могут появиться ощущение жжения, напряжение мышц лица, боли в грудной клетке, голове, депрессия – эти симптомы известны как “синдром китайских ресторанов“, т.к. эта соль широко используется в китайской кухне). Многие аналоги глутамата токсичны.

Читайте так же:  Витамины от выпадения шерсти

Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

В нервной ткани синтезируются различные белки, в том числе нейроспецифические, которые участвуют в генерации и проведении нервного импульса, процессах переработки и хранения информации, клеточном узнавании, рецепции и др. Особую группу представляют сократительные белки нервной ткани (нейротубулин, нейростенин, актиноподобные белки – кинезин и др.), которые обеспечивают ориентацию и подвижность цитоструктурных образований (микротрубочек, нейрофиламентов), активный транспорт компонентов нейрона. Кроме того, в формировании миелина, в процессах клеточной адгезии, нейрорецепции участвуют специфические гликопротеиды.

Передача сигнала в химическом синапсе осуществляется нейромедиаторами, которые представлены 4 группами: моноамины (серотонин, дофамин, гистамин, норадреналин), аминокислоты (медиаторы возбуждения: аспартат, глутамат; тормозные медиаторы: глицин, таурин, ГАМК), пуриновые (аденозин, АТФ), пептиды (нейропептид У, вещество Р, соматостатин, люлиберин).

В механизмах формирования памяти участвуют как “классические” медиаторы, так и большое число нейропептидов; среди последних – вазопрессин, фрагменты АКТГ, введение которых в небольших дозах знаЧительно стимулирует процессы, связанные с запоминанием и извлечением информации из памяти. Имеются сведения о том, что при обучении в мозге животных вырабатываются определенные олигопептиды, которые при введении необученным индивидам способны возбуждать у них выработку аналогичного навыка. Однако конкретные механизмы такого “транспорта памяти ” пока не известны.

Гемато-энцефалический барьер (ГЭБ) (от греческого haimatos – кровь и enkephalos – мозг) – физиологический механизм, регулирующий обмен веществ между кровью, спино-мозговой жидкостью и мозгом. ГЭБ осуществляет защитную функцию, препятствуя проникновению в ЦНС некоторых ксенобиотиков, введенных в кровь, или продуктов нарушенного обмена веществ, образовавшихся в самом организме. От проницаемости ГЭБ в направлении кровь мозг и мозг кровь для различных веществ зависит в значительной степени состояние нервных клеток головного и спинного мозга, особо чувствительных даже к небольшим колебаниям состава и физико-химических свойств окружающей среды. через различные участки ГЭБ из крови в ЦНС проникают те или иные соединения, необходимые для питания и деятельности нервных образований, различающихся как строением, так и химическим составом. В осуществлении барьерных функций особая роль межклеточному матриксу, находящемуся между клетками стенок капилляров, представленному протеогликанами.

ОБМЕН БЕЛКОВ И АМИНОКИСЛОТ.

Белки являются источником N2 для организма, поступающий с белками азот выводится в виде конечных продуктов азотистого обмена, который характеризуется понятием азотистый баланс.

Азотистый баланс – разница между поступающими в организм N2 и выводимым из организма.

Различают три вида:

Ø Азотистое равновесие

Ø Положительный азотистый баланс

Ø Отрицательный азотистый баланс

При положительном азотистом балансе поступление N2 преобладает над выделением. Различают «+» азотистый баланс (беременность). Для детей 1 года жизни — +30%, в 4 года — +25%, в подростковом (14 лет) +14%. Ложный «+» азотистый баланс, при котором происходит задержка в организме конечных продуктов азотистого обмена. Это наблюдается при заболевании почек.

«-» азотистый баланс – преобладает выделение над поступлением. Это при тяжелых заболеваниях, туберкулез, ревматизм, онкологических заболеваний.

Азотистое равновесие – поступление N2=его выделению. Характерно для здоровых взрослых людей.

Азотистый обмен характеризуется коэффициентом изнашивания – то количество белка, которое теряется из организма в условиях полного белкового голодания. Для взрослого – 53 мг/1 кг, 24 г/сут. У новорожденных коэффициент изнашивание выше и составляет 120мг/кг. Азотистое равновесие обеспечивается белковым питанием. Этот белковый рацион должен иметь определенное количество и начальными характеристиками.

Для взрослых существует 2 нормы:

Белковый минимум – то количество белка, которое обеспечивает азотистое равновесие при условии, что все энергетические затраты обеспечиваются углеводами и жирами. 40-45 г/сут.

Белковый оптимум – если долго использовать белковый минимум, то постепенно при ограниченном доступе страдают иммунные процессы, процессы кроветворения, репродуктивная система, поэтому оптимально для взрослых является более высокая норма – оптимум (оно обеспечивает выполнение всех его функций без ущерба для здоровья). 100 – 120 г/сут.

Для детей: В настоящее время норма потребления пересматривается в сторону их снижения. Для новорожденного ≈ 2 г/кг, к концу 1 года до 1 г/сут (при естественном вскармливании). 1,5 – 2 г/сут (при искусственном вскармливании.

Все белки делятся на полноценные и неполноценные. Полноценные белки должны отвечать следующим требованиям:

Ø Содержать набор всех незаменимых аминокислот (валин, лейцин, изолейцин, тропин, метионин, лизин, аргенин, гистидин, триптофан, фенилаланин).

Ø Соотношение между аминокислотами должно быть близким к соотношению в тканевых белках

Ø Хорошо перевариваться в ЖКТ

Полноценные жиры – животные. Для новорожденных все белки должны быть полноценными (белки грудного молока). В возрасте 3-4 года ≈ 70-75% должны быть полноценными. Для взрослых ≈ 50%.

Ø Протеолитические ферменты выделяются в неактивном состоянии (защитный механизм от переваривания тканевых белков)

Ø Их активирование происходит в просвете ЖКТ путем частичного протеолиза

Ø Протеазы ЖКТ могут относится либо к эндопептидам или экзопептидазам (концевые аминокислоты отрываются) они отличаются субстратной специфичностью.

Переваривание белков происходит в желудке и в тонком кишечнике. Основной фермент расщепляющий белок является пепсин. Он выделяется в неактивном состоянии в виде профермента – пепсиногена. Под действием HCl идет частичный протеолиз и превращение его в активную форму пепсин.

Это обнажает активный центр, меняет структуру белка. Пепсин относится к эндопептидазам (разрывает внутри пептидные связи) тирозин – фенлиаланин действует после этих аминокислот.

Ø Специфичный активатор пепсиногена

Ø Обеспечивает оптимум рН для пепсина (рН = 1-2)

Ø Вызывает частичную денатурацию белка

Ø Бактерицидный барьер

Слизистая желудка имеет целый ряд защитных механизмов:

a) выработка слизи (основной компонент ТАГ)

b) выделение пепсина в неактивном состоянии

c) выделение бикарбонатов

У детей процессы переваривания менее активны, чем у взрослых так как менее активный пепсин, более щелочная среда в желудке у маленьких детей в желудке кроме пепсина есть хемозин (фермент створаживающий молоко), гастриксин (рН 4-5), протеазы грудного молока, катепсины. В желудке происходит частичное перевариваривание белков до пептидов. Дальнейшее переваривание в тонком кишечнике под действием ферментов поджелудочной железы и собственные ферменты.

Ферменты поджелудочной железы:

трипсин – выделяется поджелудочной железой в неактивном состоянии в виде трипсиногена, активируется ферментом энтеропептидазой (киназой) вырабатываемой слизистой кишечника. Активация путем частичного протеолиза ( 6 аминокислот)→освобождается активный центр. В активном центре в зоне связывания преобладают кислые кислоты (глю, асп), поэтому трипсин расщепляет пептидную связь образованную лизином и аргинином. Он активирует и другие ферменты и себя.
Читайте так же:  Какие жиросжигатели лучше для мужчин

Хемотрипсин – вырабатывается в неактивном состоянии — хемотрипсиноген, активируется трипсином путем частичного протеолиза, относится к эндопептидазам, содержат в активном центре гидрофобной аминокислоты, расщепляет связи ароматических кислот (фен, тир)

Эластаза – активирует проэластаза, трипсином (частичный протеолиз), в активном центре эластазы преобладает ГЛИ, действует на пептидные связи.

Карбоксилазы – относятся к эндопептидазам, отщепляет концевые аминокислоты, тип А-отщепляют С-конец аминокислоты, ароматические (фен, тир) тип В – отщепления С-концевой от лизина и аргинина.

Ферменты поджелудочной железы:

Аминопептидазы – эйкопептидазы, отщепляют N-конец аминокислоты среди аминопептидаз активной является лейкоаминопептидаза (ЛАГ). Дипептидазы расщепляет дипептидазы. В тонком кишечнике происходит полная гидролитическое расщепление пищевых белков до аминокислот. Образовавшиеся аминокислоты подвергаются всасыванию. У детей снижена активность ферментов слизистой кишечника и поджелудочной железы.

Na-зависимый активный процесс, нужна АТФ; перенос отдельных аминокислот осуществляется специальными переносчиками. Среди транспортных систем наиболее важной является система, предполагающая участие:

Ø трипептидаза глютадиона (глю-гли-цис) и глю имеет свободные СООН группы

Аминакислота связана с глютаминовой кислотой и образует комплекс→подвергается всасыванию, глю-возвращается. Эта активно для ЦНС, сер, треонина.

У детей могут всасываться не только аминокислоты, но и пептиды и низкомолекулярными белками. Эта способность имеет 2 следствия:

Ø могут поступать Jg, антитела из грудного молока

Ø вызывают аллергическую реакцию

ГНИЕНИЕ БЕЛКОВ В ТОНКОМ КИШЕЧНИКЕ

Процессу гниения подвергаются не полностью расщепляющиеся белки и отдельные аминокислоты. Оно под действием ферментов гнилостной микрофлоры. При гниении образуется большое количество газообразного и негазообразного нередко токсичные веществ. К продуктам гниения относится: CO2, CH4, NH3, H2S, меркаптаны, альдегиды, кетоны, карболовые кислоты, диамины.

Диамины образуются из аминокислот (лизин, орнитин). При их декарбоксилировании образуется:

Могут выводится из кишечника или обезвреживаться в печени, могут обезвреживать токсичные циклические продукты.

Чрезвычайно токсичные, их всасывание происходит по системе vena porta, обезвреживание в печени.

ОБЕЗВРЕЖИВАНИЕ В ПЕЧЕНИ ПРОДУКТОВ ГНИЕНИЯ БЕЛКОВ

1. синтез мочевины из NН3

2.

микросомальное окисление токсичных веществ – участвуют мооксидазы, в результате гидроксилирования идет снижение токсичности, повышается водорастворимость, повышается реакционная способность.

3. образование парных нетоксичных соединений – образующихся путем присоединения к обезвреживанию продуктами Н24 в процессах обезвреживания участвует в активной форме ФАДС (фосфо-аденозил-фосо-сульфат), которая обезвреживает индоксил:

Калиевая соль этой кислоты выводится через почки. Его количество в моче свидетельствует об антитоксической функции почек и усилении гнилостных процессов.

Гиалуроновая кислота-активная форма это УДФ-глюкозовая кислота (урацил-рибоза-ф-ф-глюкуроновая кислота)

Глицин – бензойная кислота + глицерин→гиалуроновая кислота, используется для оценки антитоксической функции печени.

Проба Квина – вводят бензойную кислоту. Антипириновая проба – аптипириновое вещество, которое в печени подвергается микросомальное окисление.

Гнилостные процессы у детей отсутствуют. У взрослых усиление гнилостных процессов при снижении активности протеолитических ферментов желудка и кишечника при снижении моторики ЖКТ, дизбактериозах.

ДИНАМИЧЕСКОЕ ОСОТОЯНИЕ БЕЛКОВ В ОРГАНИЗМЕ.

Белки тканей организма постоянно обновляются, то есть подвергается распаду и постепенно замещаюися вновь синтезированными. В таких тканях как кровь, слизистая кишечника, печень приблизительно за 10 дней, Белки обмениваются на ½ — период полуобмена. В других тканях – кожа, мышцы период полуобмена >. Распад тканевых белков (катаболизм) осуществляют особые тканевые протеолитические ферменты катепсины. Выделяют несколько видов, которые обозначают: А, В, Д, Н, N. Катепсины локализованы как в лизосомах так и в цитозоле. Лизосомальные называются кислыми катепсинами так как оптимум рН= 4,5-5,5. Катепсины могут быть как эндопептидазами, так и экзопептидазами. В активном центре катепсинов могут присутствовать цистеин, аспарагиновая кислота, серин. Например катепсин Д по эффекту аналогичен катепсину желудочного сока, катепсин Н – печени, катепсин N – обладает калогенолитической активностью.

Ø участвует в обновлении тканевых белков

Ø разрушает дефективный денатуриновый белок. Обычно эти белки вначале соединяются в особый белок убиквинтин и после этого начинается разрушение дефективных белков катепсинами

Ø реконструктивная функция – катепсины переводят неактивные формы белки в активные.

Ø При голодании, кровопотери, интоксикации катепсины обеспечивают мобилизацию белков из условных депо белков (плазма крови, мышцы, печень).

В ткани всегда существует определенный запас аминокислот. Он поддерживается на достаточно постоянном уровне благодаря сбалансированности путей образования и использования аминокислот.

Пути образования тканевых аминокислот

1. Аминокислоты всосавшиеся из кишечника в результате переваривания пищевых белков (1/3 фонда)

2. Аминокислоты, образовавшиеся при распаде белков

3. Синтез в тканях заменимых кислот

1. Синтез тканевых белков из пепетидов

2. образование небелковых N-содержащих веществ (пуриновые основания, креатинин, биогенные амины)

3. с энергитической целью

4. на синтез углеводов (глюконеогенез)

5. образование некоторых метаболитов липидного обмена

Катаболизм условно делят на: общие реакции (происходят в отношении радикала, аминогрупп, СООН-групп), специфические реакции.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9560 —

| 7557 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Видео удалено.
Видео (кликните для воспроизведения).

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источники


  1. Круковер, В.И. 300 советов диетолога / В.И. Круковер. — Москва: Мир, 2004. — 304 c.

  2. И.И. Брехман Введение в валеологию — науку о здоровье / И.И. Брехман. — М.: Наука, 2006. — 125 c.

  3. Садикова, Н. Б. 10000 советов. Лечебное и оздоровительное питание / Н.Б. Садикова. — М.: Мир и Образование, 1999. — 704 c.
  4. Цуцуми Здоровье без лекарств / Цуцуми, Йосиро. — М.: Светотон, 1993. — 240 c.
Метаболизм белков и аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here