Нарушение обмена аминокислот и белков

Сегодня предлагаем ознакомится со статьей на тему: нарушение обмена аминокислот и белков с профессиональным описанием и объяснением.

Нарушение обмена аминокислот

Аминокислоты поступают в кровь и ткани из пищеварительного тракта; кроме того, они образуются при деструкции тканевых белков под действием внутриклеточных катепсинов (протеиназ).

Основная часть аминокислот используется в организме в качестве строительных блоков при синтезе белков. Кроме того, аминокислоты используются для синтеза пуриновых и пиримидиновых оснований, гормонов, гема, различных биологически активных пептидов (интерлейкины, факторы роста и т.д.), меланина, глюкозы, жирных кислот и ряда других веществ. Глицин и глутамат играют роль нейромедиаторов в ЦНС. Аминокислоты, не использованные для вышеупомянутых целей, подвергаются окислению до СО2 и Н2О с освобождением энергии.

В норме при окислении аминокислот освобождается 10-15% образующейся в организме энергии. Окисление аминокислот усиливается при избыточном поступлении их в организм, при голодании, сахарном диабете, гипертиреозе, снижении синтеза белков и некоторых других состояниях.

Катаболизм большинства аминокислот начинается с отщепления от них аминогруппы, что происходит в 2-х типах реакций: трансаминирования и дезаминирования.

Трансаминирование— перенос аминогруппы аминокислоты на α-кетокислоту, в результате образуются новая кетокислота и новая аминокислота.

Процесс трансаминирования легко обратим и катализируется трансаминазами,коферментом которых является пиридоксальфосфат — производное витамина В6(служит переносчиком аминогрупп). Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях выше остальных, — глутамат, аланин, аспартат и соответствующие им кетокислоты — α-кетоглутарат, пируват, оксалацетат. Основным акцептором аминогрупп служит α-кетоглутарат. Принимая аминогруппу, он превращается в глутамат — донор аминогрупп, способный передавать их любым α-кетокислотам для образования новых аминокислот (рис. 12-40). Кетокислоты, образующиеся при трансаминировании (например, пировиноградная), также могут использоваться для синтеза глюкозы или окислиться до СО2 и Н2О подобно глюкозе и жирным кислотам. Трансаминирование — начальный этап катаболизма аминокислот, в результате которого аминный азот перераспределяется в тканях организма. Реакции трансаминирования играют роль в превращении аминокислот в кетокислоты или в образовании из кетокислот ряда заменимых аминокислот в том случае, если организм испытывает в них потребность. При трансаминировании общее количество аминокислот в клетке не меняется.

Рис. 12-40.Трансаминирование

Нарушение процесса трансаминированияв целом организме происходит при гиповитаминозе В6, при недостатке α-кетокислот (голодание, сахарный диабет). Нарушение трансаминирования в отдельных органах, например в печени, происходит при некрозе клеток, что сопровождается выходом трансаминаз в кровь. Такое же явление имеет место при инфаркте миокарда. В поврежденных клетках может быть нарушен синтез белковой части трансаминаз.

[2]

Дезаминирование— реакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота, которая может использоваться в реакциях трансаминирования, и выделяется молекула аммиака. Процесс окислительного дезаминирования снижаетсяв связи с ослаблением трансаминирования, при гипоксии, гиповитаминозах В2, РР, С, белковом голодании.

Нарушение процессов трансаминирования и окислительного дезаминирования аминокислот ограничивает их использование для синтеза глюкозы, жирных кислот, заменимых аминокислот, а также их окисление с освобождением энергии. При этом повышается содержание свободных аминокислот в сыворотке крови и в моче (гипераминоацидемияи гипераминоацидурия),снижается синтез мочевины. Такие нарушения особенно выражены при обширных повреждениях гепатоцитов (вирусные и токсические гепатиты и др.), так как в этих клетках метаболизм аминокислот происходит наиболее интенсивно.

Наряду с внепочечной гипераминоацидурией, обусловленной усиленным поступлением аминокислот из крови в мочу, существует почечная форма гипераминоацидурии, связанная с нарушением реабсорбции аминокислот в почечных канальцах, при этом содержание аминокислот в сыворотке крови нормально или даже пони-

жено (см. главу 19). Гипераминоацидурия (физиологическая) обнаруживается у детей раннего возраста в связи с функциональной неполноценностью (незрелостью) эпителия почечных канальцев; у беременных повышается экскреция с мочой гистидина и ряда других аминокислот.

Одним из путей метаболизма аминокислот является их декарбоксилирование,которое состоит в отщеплении от аминокислоты α-карбоксильной группы. В результате образуются СО2 и биогенные амины: гистамин — из гистидина, серотонин — из 5-окситриптофана, тирамин — из тирозина, γ-аминомасляная кислота (ГАМК) — из глутаминовой, дофамин — из диоксифенилаланина и некоторые другие.

Эти процессы необратимы и катализируются декарбоксилазами,коферментом которых является пиридоксальфосфат (витамин В6);при его дефиците образование биогенных аминов снижается. В частности, уменьшается образование ГАМК, которая является основным тормозным нейромедиатором, как следствие этого наблюдается частое развитие судорог. Биогенные амины обладают высокой физиологической активностью. Наряду с ГАМК, серотонин и дофамин являются также нейромедиаторами в ЦНС, их повышенное или пониженное содержание в ткани мозга играет роль в патогенезе некоторых форм нейропатологии (нервной депрессии, паркинсонизма, шизофрении). Повышенное образование в организме серотонина (при опухоли, развивающейся из энтерохромафинных клеток кишечника) сопровождается спазмом мускулатуры бронхов и кишечника, диареей, усилением агрегации тромбоцитов; кроме того, серотонин является мощным вазоконстриктором. Хорошо известна роль гистамина в появлении болевых ощущений, развитии воспаления и аллергических реакций.

Устранение избытка биогенных аминовпроисходит при участии аминооксидаз,которые катализируют превращение их в альдегидыпосле отщепления аминогруппы в виде NH3. Серотонин превращается в оксииндолилуксусную кислоту, которая выделяется с мочой.

Наследственные нарушения обменанекоторых аминокислот(см. раздел 5.1).

Дата добавления: 2016-11-18 ; просмотров: 427 | Нарушение авторских прав

Нарушение белкового обмена

Белок играет важную роль в организме человека. На основе органического вещества формируются клетки и ткани. Белок является основой гормонов, антител и ферментов, выполняющих функцию роста организма и оказывающих защиту от негативного влияния факторов окружающей среды. При хорошем показателе обмена белка в организме человек обладает высоким иммунитетом, отличной памятью и выносливостью. Органическое вещество имеет способность влиять на обменный процесс минеральных солей и витаминов. Нарушение белкового обмена нуждается в незамедлительном лечении.

Обмен белков и его значение

Недостаток белков в организме провоцирует возникновение серьёзных нарушений. Вследствие низкого процента белка:

  • замедляется рост и развитие ребёнка;
  • происходят необратимые изменения в печени человека;
  • возникают изменения в функционировании желез внутренней секреции и составе крови;
  • ослабляется умственная деятельность;
  • снижается концентрация внимания;
  • снижается работоспособность и степень сопротивляемости к инфекционным недугам.

Важно! Возникновение нарушений возможно на любом этапе синтеза белка. Любое нарушение несёт опасность для здоровья человека.

Читайте так же:  Витамины для суставов спортпит

Обмен белков и его значение

К конечным продуктам расщепления белка можно отнести:

Углекислый газ способен выводиться из организма через легкие, вода выводится через почки, лёгкие и кожный покров. Через кровь ядовитый аммиак достигает печени и преобразуется в мочевину, которая покидает организм через почки и кожный покров.

Белки расщепляются на аминокислоты в отличие от липидов, которые преобразуются в жирные кислоты и глицерин.

Метаболизм белков в организме человека: схема с описанием

Специалисты выделяют несколько этапов синтеза белков:

  1. Этап всасывания и синтеза.
  2. Обмен аминокислот.
  3. Этап конечного обмена.

На любом из этих этапов могут возникать нарушения, отличающиеся своими особенностям.

Всасывание и синтез

Основную часть белков люди получают через пищу. При возникновении нарушения переваривания и всасывания начинает развиваться белковая недостаточность. Для обеспечения нормального процесса синтеза органического вещества требуется правильно функционирующая система синтеза. Нарушение может быть вызвано наследственными факторами или быть приобретённым. Количество синтезируемого белка может уменьшаться также вследствие проблем с работой иммунной системы. Нарушения, возникающие при всасывании белка, могут привести к дистрофии тканей кишечника, отсутствию аппетита и появлению слабости.

Важно! При затруднении процесса синтезирования белков начинает меняться молекулярная структура органического соединения. Вследствие этого возникают гормональные изменения, приводящие к дисфункции нервной системы и снижению иммунитета. Возможно появление геномных ошибок.

Обмен аминокислот

Чаще всего проблема на этом этапе возникает на фоне наследственной предрасположенности и недостатка тирозина, врождённого альбинизма. Небольшое количество тирозина может спровоцировать наследственную тирозинемию. При хронической форме недуга больного беспокоят частые рвотные позывы, общая слабость, резкое снижение веса, что нередко приводит к анорексии. Лечащий врач в такой ситуации назначает соблюдение специальной диеты, при которой следует питаться продуктами с высоким содержанием витамина D. Нарушение обмена аминокислот вызывает дисбаланс процесса образования и дальнейших окислительных разрушений органических соединений. Оказать негативное воздействие на организм на данном этапе может затяжная диета, период вынашивания малыша, недуги печени и сердечно-сосудистой системы.

Этап конечного обмена

При возникновении патологии в этот период начинают образовываться азотистые продукты, происходит процесс их конечного выведения из организма. Часто причиной патологии становится гипоксия (недостаток кислорода). Важно своевременно обратить внимание на белковый состав в крови! Нарушившееся содержание органического вещества в кровеносной системе может сигнализировать о возникновении проблем с печенью и почками. Восстановление нормального обмена белка возможно только под наблюдением терапевта и специалиста в области диетологии. Не стоит терять время, лучше своевременно посетить врача, который подберёт подходящий вид терапии.

Почему не усваивается белок в организме, причины белкового голодания

К белковому голоданию нередко приводят:

Если белок не усваивается организмом, в чём может быть причина? Нарушиться процесс всасывания и синтеза белков может даже в случаях, когда у пациента было сбалансированное питание, отсутствовали пищевые нарушения. Причиной в этом случае станет наличие:

Заболеваний системы пищеварения

  • заболеваний системы пищеварения, а именно присутствие в анамнезе гастрита, колита, язвы желудка, при которых затрудняется процесс переваривания и всасывания;
  • патологии печени, при которой нарушается процесс синтеза;
  • тяжёлого инфекционного недуга;
  • сахарного диабета;
  • серьёзных кровопотерь, при которых теряется основной процент белка.

Также причиной может стать наследственность, из-за которой из поколения в поколение передаются проблемы с расщеплением, всасыванием, синтезом и выведением аминокислот. При возникновении нарушений синтеза аминокислоты перестают принимать участие в метаболизме и начинают пребывать в свободном плавании в организме. При этом возникает повышение концентрации аминокислот в крови, тканях и моче. Симптоматика человека аналогична с симптомами животного при подобных нарушениях. Это способствует перегрузке печени, почек и приводит к тяжёлому поражению, нарушающему состав крови. Очень важно посетить лечащего врача, который направит на прохождение биохимии (анализа крови), подберёт корректирующую диету и пропишет препараты для прохождения длительной терапии.

Важно! В процессе онтогенеза человека существенно меняется соотношение органических веществ.

Регуляция белкового обмена

Согласно данным патофизиологии, процесс регуляции обмена белка происходит нейрогуморальным путем. Конечное звено управляющего воздействия при этом – гуморальное влияние, заключающееся в воздействии гормонов и полезных элементов на организм. Витамины активно участвуют в процессе белкового биосинтеза. Гормон островковой ткани поджелудочной железы способствует влиянию инсулина на процесс азотистого обмена и синтезу белка в тканях. Гормоны гипофиза, щитовидной железы и коры надпочечников также принимают активное участие в обмене белка. Гормоны анаболического действия (соматотропный гормон, половые гормоны, инсулин) усиливают процесс синтеза белка. Стоит помнить, что при повышении в крови уровня глюкозы инсулин выбрасывается в кровь. Аминокислоты в нужном составе превращаются в мышечно-белковую ткань.

Важно! Обмен белков способен резко поменяться вследствие воздействия ЦНС (центральной нервной системы) и коры большого полушария головного мозга. Специалисты уверены в существовании условно-рефлекторных изменений интенсивного белкового обмена.

О значимости сложнорефлекторных регуляций обмена белка может свидетельствовать специфическое динамическое действие потребления пищи в случаях, когда изменяется интенсивность обменного процесса еще до начала момента распада пищевых элементов и достижения конечных продуктов гидролиза в кровеносную систему. Принимая белковую пищу, можно почти на 20 % увеличить основной обмен организма.

Физиология обмена белков в организме человека – сложный процесс, требующий изучения и внимания. Жировой, углеводный и белковый обмен, несомненно, играют важную роль в организме человека. Белки, жиры, так же как и углеводы, должны поступать в организм в достаточном количестве, что позволит избежать возникновения патологии.

Нарушения обмена аминокислот

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов и всех аминокислот: трансаминирование приводит к образованию аминокислот, дезаминирование — к их разрушению.

Сущность реакции трансаминирования заключается в обратимом переносе аминогруппы от аминокислоты на ?-кетокислоту без промежуточного образования свободного аммиака. Реакция катализируется специфическими ферментами: аминотрансферазами или трансаминазами, кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридоксаминофосфат).

Нарушения реакции трансаминирования могут возникать по нескольким причинам: это, прежде всего недостаточность пиридоксина (беременность, подавление сульфаниламидными препаратами кишечной флоры, частично синтезирующей витамин, торможение синтеза пиридоксальфосфата во время лечения фтивазидом). Снижение активности трансаминаз происходит также при ограничении синтеза белков (голодание, тяжелые заболевания печени). Если в отдельных органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые трансаминазы поступают в кровь и повышение их активности в крови при данной патологии является одним из диагностических тестов. В изменении скорости трансаминирования существенная роль принадлежит нарушению соотношения между субстратами реакции, а также гормонам, особенно гликокортикоидам и гормону щитовидной железы, оказывающим стимулирующее влияние на этот процесс.

Читайте так же:  Сколько можно принимать глютамин

Угнетение окислительного дезаминирования, приводящее к накоплению неиспользованных аминокислот, может вызвать повышение концентрации аминокислот в крови — гипераминоацидемию. Следствием этого являются усиленная экскреция аминокислот почками (аминоацидурия) и изменение соотношения отдельных аминокислот в крови, создающие неблагоприятные условия для синтеза белковых структур. Нарушение дезаминирования возникает при недостатке компонентов, прямо или косвенно участвующих в этой реакции (недостаток пиридоксина, рибофлавина, никотиновой кислоты; гипоксия; белковая недостаточность при голодании).

Нарушения декарбоксилирования. Являясь очень важным, хотя и не универсальным, направлением белкового обмена, декарбоксилирование протекает с образованием СО2 и биогенных аминов. Декарбоксилированию подвергаются только некоторые аминокислоты: гистидин — с образованием гистамина, тирозин — тирамина, 1-глутаминовая кислота — у-аминомасляной кислоты, 5-гидрокси-триптофан — серотонина, производные тирозина (3,4-диоксифени-лаланин) и цистина (1-цистеиновая кислота) — соответственно 3,4-диоксифенилэтиламина (дофамин) и таурина.

Биогенные амины, как известно, обладают специфической биологической активностью, и увеличение их количества может вызвать ряд патологических явлений в организме. Причиной такого увеличения может быть не только усиление декарбоксилирования соответствующих аминокислот, но и угнетение окисления аминов и нарушение их связывания белками. Так, например, при гипоксических состояниях, ишемии и деструкции тканей (травмы, облучение и др.) ослабляются окислительные процессы, что способствует усилению декарбоксилирования. Появление большого количества биогенных аминов в тканях (особенно гистамина и серотонина) может вызвать значительное нарушение местного кровообращения, повышение проницаемости сосудов и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот. Прохождение аминокислот через определенные метаболические пути детерминируется наличием и активностью соответствующих ферментов. Наследственное нарушение синтеза ферментов приводит к тому, что соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Клиническая картина такого заболевания определяется, во-первых, появлением слишком большого количества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а во-вторых, дефицитом вещества, которое должно было образоваться.

Таких генетически обусловленных нарушений обмена аминокислот известно довольно много; все они наследуются рецессивно. Некоторые из них представлены в таблице 1.

Нарушения обмена фенилаланина. Фенилаланин в норме необратимо окисляется в тирозин. Если же в печени нарушается синтез необходимого для этого фермента фенилаланингидроксилазы (см. рис. 1а), то окисление фенилаланина идет по пути образования фенилпировиноградной и фенилмолочной кислот — развивается фенилкетонурия. Однако этот путь обладает малой пропускной способностью, и поэтому фенилаланин накапливается в большом количестве в крови, тканях и цереброспинальной жидкости, что в первые же месяцы жизни ведет к тяжелому поражению центральной нервной системы и неизлечимому слабоумию. Из-за недостаточного синтеза тирозина снижается образование меланина, что обусловливает посветление кожи и волос. Кроме того, при увеличенной выработке фенилпировиноградной кислоты тормозится активность фермента (дофамингидроксилазы), необходимого для образования катехоламинов (адреналина, норадреналина). Поэтому тяжесть наследственного заболевания определяется комплексом всех этих нарушений.

Установить болезнь можно с помощью следующей пробы: при добавлении к свежей моче нескольких капель 5% раствора трихлоруксусного железа появляется оливково-зеленая окраска. Больные погибают в детстве, если не проводится специальное лечение, которое заключается в постоянном, но осторожном (контроль за аминокислотным составом крови) ограничении поступления фенилаланина с пищей.

Нарушения обмена тирозина. Обмен тирозина осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую (рис. 1б) первая, а также тирозин выделяются с мочой. Это нарушение носит название тирозиноза. Если же задержка окисления тирозина происходит в момент превращения гомогентизиновой кислоты в малеилацетоуксусную (рис. 1в), развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (оксидаза гомогентизиновой кислоты), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота «не успевает» появиться в крови, а если и появляется, то быстро выводится почками. При наследственном дефекте этого фермента гомогентизиновая кислота в большом количестве обнаруживается в кровии моче. Моча при стоянии на воздухе, а также при добавлении к ней щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона («захватывающий щелочь»). Гомогентизиновая кислота из крови проникает в ткани — хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего появляются темные пятна в области ушей, носа, щек, на склерах. Иногда развиваются тяжелые изменения в суставах.

Тирозин, кроме того, является исходным продуктом для образования красящего вещества кожи и волос — меланина. Если превращение тирозина в меланин уменьшено из-за наследственной недостаточности тирозиназы (рис. 1д), возникает альбинизм.

Наконец, тирозин является предшественником тироксина. При недостаточном синтезе фермента, катализирующего процесс йодирования тирозина свободным йодом (рис. 1г), нарушается образование гормонов щитовидной железы.

Нарушения обмена триптофана. Основной путь метаболизма триптофана приводит к синтезу амида никотиновой кислоты, который играет очень важную роль в жизнедеятельности организма, являясь простетической группой ряда окислительных ферментов — никотинамидадениндинуклеотида (НАД) и его восстановленной формы никотинамидадениндинуклеотидфосфата (НАДФ). Поэтому при недостаточности никотиновой кислоты и ее амида нарушаются многие обменные реакции, а при значительном дефиците этих веществ развивается пеллагра.

Рис.1. Блокада путей метаболизма фенилаланина и тирозина.

Нарушение обмена триптофана может проявиться также в изменении количества образующегося из него серотонина.

Нарушение белкового обмена

Белок имеет важную функцию в организме, так как является пластическим материалом, из которого идет строительство клеток, тканей и органов организма человека. Помимо этого, белок – основа гормонов, ферментов и антител, которые выполняют функции роста организмы и защищают его от воздействия негативных факторов окружающей среды. При нормальном обмене белка в организме, у человека высокий иммунитет, отличная память и выносливость. Белки влияют на полноценный обмен витаминов и минеральных солей. Энергетическая ценность 1 г белка составляет 4 ккал (16,7 кДж).

При недостатке белков в организме возникают серьезные нарушения: замедление роста и развития детей, изменения в печени взрослых, деятельности желез внутренней секреции, состава крови, ослабление умственной деятельности, снижение работоспособности и сопротивляемости к инфекционным заболеваниям.

Читайте так же:  Креатин как принимать для набора мышечной

Белковый обмен играет важную роль в процессе жизнедеятельности организма. Нарушение белкового обмена вызывает снижение активности, также понижается сопротивляемость к инфекциям. При недостаточном количестве белков в детском организме – возникает замедление роста, а также снижение концентрации. Необходимо понимать, что нарушения возможны на разных этапах синтеза белка, но все они опасны для здоровья и полноценного развития организма.

Этапы синтеза белков:

  • Всасывание и синтез;
  • Обмен аминокислот;
  • Конечный этап обмена.

На всех этапах могут существовать нарушения, которые имеют свои особенности. Рассмотрим их детальнее.

Первый этап: Всасывание и синтез

Основное количество белков человек получает из пищи. Поэтому при нарушении переваривания и всасывания развивается белковая недостаточность. Для нормального синтеза белков необходимо правильное функционирование системы синтеза. Нарушения этого процесса могут быть приобретенными или наследственными. Также уменьшение количества синтезируемого белка может быть связано с проблемами в работе иммунной системы. Важно знать, что нарушения в процессе всасывания белков приводит к алиментарной недостаточности (дистрофия тканей кишечника, голодание, несбалансированный состав пищи по аминокислотной составляющей). Также нарушение процессов синтезирования белков чаще всего ведут к изменению количества синтезированного белка или к образованию белка с измененной молекулярной структурой. В результате происходят гормональные изменения, дисфункция нервной и иммунной системы, также возможны геномные ошибки.

Второй этап: Обмен аминокислот

[3]

Нарушения обмена аминокислот также могут быть связаны с наследственными факторами. Проблемы на этом этапе чаще всего проявляются в нехватке тирозина. Это, в частности, провоцирует врожденный альбинизм. Более страшное заболевание, спровоцированное нехваткой тирозина в организме – наследственная тирозенемия. Хроническая форма заболевания сопровождается частой рвотой, общей слабостью, болезненной худобой (вплоть до возникновения анорексии). Лечение состоит в соблюдении специальной диеты с высоким содержание витамина D. Нарушения обмена аминокислот приводятк дисбалансу процессов трансаминирования (образования) и окислительного разрушения аминокислот. Влиять на негативное развитие этого процесса может голодание, беременность, заболевания печени, а также инфаркт миокарда.

Третий этап: конечный обмен

При конечных этапах белкового обмена, может возникнуть патология процесса образования азотистых продуктов и их конечного выведения с организма. Подобные нарушения наблюдаются при гипоксии (кислородном голодании организма). Также следует обращать внимание на такой фактор, как белковый состав крови. Нарушение содержания белков в плазме крови может указывать на проблемы с печенью. Также катализатором развития болезни могут быть проблемы с почками, гипоксия, лейкоз. Восстановлением белкового обмена занимается терапевт, а также врач-диетолог.

Видео (кликните для воспроизведения).

Симптомы нарушения белкового обмена

При большом наличии белка в организме, может быть его переизбыток. Это связано в первую очередь с неправильным питанием, когда рацион больного почти полностью состоит из белковых продуктов. Врачи выделяют следующие симптомы:

  • Снижение аппетита;
  • Развитие почечной недостаточности;
  • Отложение солей;
  • Нарушения стула.

Избыток белка также может привести к подагре и ожирению. Фактором риска при возникновения подагры может быть чрезмерное употребление в пищу большого количества мяса, особенно с вином и пивом. Подагрой чаще болеют мужчины пожилого возраста, для которых характерна возрастная гиперурикемия.

Симптомы подагры:

  • отечность и покраснение в области первого плюснефалангового сустава;
  • гипертермия до 39 С;
  • подагрический полиартрит,
  • подагрические узлы (тофусы) на локтях, стопах, ушах, пальцах.

Симптомы ожирения:

  • частая одышка;
  • значительное увеличение массы тела;
  • хрупкость костей;
  • гипертензия (повышенное гидростатическое давление в сосудах).

При наличии вышеуказанных проблем, необходимо снизить потребление белковых продуктов, пить больше чистой воды, заниматься спортом. Если же организму наоборот не хватает белков для синтеза, он реагирует на ситуацию следующим образом: возникает общая сонливость, резкое похудание, общая мышечная слабость и снижение интеллекта. Отметим, что в «группу риска» попадают вегетарианцы и веганы, которые по этическим причинам не употребляют животный белок. Людям, которые придерживаться подобного стиля питания, необходимо дополнительно принимать внутрь витаминные комплексы. Особенно обратить внимание на витамин B12 и D3.

Наследственные нарушения обмена аминокислот

Важно знать, что при наследственном нарушении синтеза ферментов, соответствующая аминокислота не включается в метаболизм, а накапливается в организме и появляется в биологических средах: моче, кале, поте, цереброспинальной жидкости. Если смотреть на клиническую картину проявления этого заболевания, то она определяется в первую очередь появлением большого колличества вещества, которое должно было метаболизироваться при участии заблокированного фермента, а также дефицитом вещества, которое должно было образоваться.

Нарушения обмена тирозина

Тирозиноз — это наследственное заболевание, обусловленное нарушением обмена тирозина (необходимого для жизнедеятельности организма человека и животных, так как он входит в состав молекул белков и ферментов). Это заболевание проявляется тяжелым поражением печени и почек.Обмен тирозина в организме осуществляется несколькими путями. При недостаточном превращении образовавшейся из тирозина парагидроксифенилпировиноградной кислоты в гомогентизиновую первая, а также тирозин выделяются с мочой.

Нарушения белкового состава крови

Также стоит упомянуть о нарушениях белкового состава в крови. Изменения в количественном и качественном соотношении белков крови наблюдаются почти при всех патологических состояниях, которые поражают организм в целом, а также при врожденных аномалиях синтеза белков. Нарушение содержания белков плазмы крови может выражаться изменением общего количества белков (гипопротеинемия, гиперпротеинемия) или соотношения между отдельными белковыми фракциями (диспротеинемия) при нормальном общем содержании белков.

Гипопротеинемия возникает из-за снижения количества альбуминов и может быть приобретенной (при голодании, заболеваниях печени, нарушении всасывания белков) и наследственной. К гипопротеинемии может привести также выход белков из кровеносного русла (кровопотеря, плазмопотеря) и потеря белков с мочой.

[1]

Нарушение обмена аминокислот при витаминной недостаточности.

Ряд витаминов принимают участие в качестве кофактора в реакциях обмена простых белков и аминокислот. При недостатке того или иного витамина мы будем наблюдать нарушения в ходе того или иного процесса.

Например витаминС участвует в процессенге тропоколлагена, а именно в превращении части остатков пролина в остатки гидроксипролина. Оказывается наличие гидроксипролиновых остатков в молекуле тропоколлагена крайне важна в дальнейшем для образования межмолекулярных связей в ходе формирования коллагеновых волокон.

При недостатке витамина С гидроксилирование остатков пролина нарушается в результате образуются дефектные коллагеновые волокна обладающие меньшей плотностью. Последствиями являются

Читайте так же:  Профессиональные жиросжигатели для спортсменов

во-первых снижения прочности стенок сосудов Þ кровоизлияние в органы и ткани, во-вторых происходит расшатывание и выпадение зубов.

Важную роль в обмене аминокислот играет фосфоперидоксаль, являющийся производным витамина В6. Он является кофактором ферментов, катализирующих реакции трансаминирования аминокислот, их декабоксилирования, а так же дезаминирования отдельных кислот таких как трионина или серина. Авитаминоз витамина В6 в чистом виде практически не встречается, поскольку этот витамин синтезируется микрофлорой кишечника, но гиповитаминозы распространены. Они могут быть при беременности, при подавлении микрофлоры кишечника антибиотиками, при лечении туберкулеза некоторыми препаратами.

Недостаточность фосфопиродоксаля приводит к нарушению реакция трансаминирования и декарбоксилирования аминокислот, в том числе нарушается распад триптофана и уменьшается уровень эндогенного синтеза витамина В5.

При недостаточности витамина витамина В1 в клетках нарушается синтез заменимых аминокислот в особенности аспаратат и глутомата. Причиной является нарушение обмена углеводов с уменьшением в тканях ЩУК и a-кетоглютаровых кислот.

Дефицит в организме витамина В9 и В12 приводит к нарушению функционирования систем переноса одноуглеродных группировок. В результате нарушается синтез нуклеотидов и нуклеиновых кислот следствием чего является развитие фоливодифецитной или В12 дефицитной анемии.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9117 —

| 7229 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Нарушение белкового обмена в организме человека или чем рискует веган

Сказ про нарушение белкового обмена (БО), о котором нам нужно знать, если мы желаем себе добра и здоровья. Чем грозит сбой равновесия БО в организме человека, основная роль печени, методы исследования и лечения нарушенного обмена белка, обо всем этом прямо сейчас.

Почему у курицы в яйце, вокруг желтка — сплошной белок? Да потому, что это самая главная составляющая цыплёнка. Пока он формируется и растёт внутри уютной скорлупы — он всё это употребит и перестроит под свои нужды.

Привет, друзья! Знаю, что большинство моих читателей — не биологи, и не специалисты в области патофизиологии. Поэтому постараюсь, чтобы мой рассказ был простым и понятным.

Несколько хвалебных слов

Белок — самое гениальное образование в живой природе. Из одних и тех же аминокислот в разном сочетании складываются живые структуры. Если взяться перечислять функции, которые выполняют белковые молекулы — получится огромный список, и всё равно останется значительный пробел — то, чего мы ещё не знаем, и можем лишь догадываться.

Основные, наиболее важные функции их в нашем организме:

  • строительно-пластическая — именно он образует живые клетки, обеспечивает целостность и препятствует деформации;
  • информационная — никакой компьютер не сравнится по объёму памяти с молекулами ДНК, благодаря которым образуются разные виды жизни, а в теле — в нужном месте вырастают клетки определённого органа, складывается та или иная система;
  • двигательная — мышечные волокна имеют способность сокращаться, придавая точность и направленность нашим жестам, ходьбе, разговору, взгляду;
  • охранная — белки-иммуноглобулины обеспечивают нам защиту от агрессивных факторов внешней среды, борются с хворями и дают нам иммунитет;
  • транспортная — клетки крови переносят кислород, белки плазмы участвуют в доставке нужных веществ туда, где они необходимы, а протеины клеточных мембран — обеспечивают проникновение другим молекулам внутрь клетки;
  • сигнальная — передача команд головного мозга (гормоны участвуют в их доставке от ЦНС — к органам и тканям).

И многие другие.

Нарушение белкового обмена: когда страдает баланс

Нарушение белкового обмена в организме человека может привести к тяжёлым последствиям, вплоть до смерти. Все виды нарушения связаны с двумя главными факторами:

  1. Алиментарный или экзогенный — недополучение нужных веществ извне, получение их в неправильных пропорциях, либо избыточное их поступление;
  1. Внутренний, эндогенный дисбаланс — возникает при нарушениях переваривания и всасывания, кровотечениях, ожога и иных патологических состояниях, тормозящих синтез белковых молекул.

За первое направление отвечает питание. Если ты употребляешь мало белковой пищи, не заботишься о соотношении Б/Ж/У, голодаешь, резко худеешь на зверских диетах «10 кг за неделю», или наоборот, предаёшься излишествам — страдает белковый обмен. А вместе с ним — и баланс прочих веществ в организме.

Второе направление обширнее. Существует ряд факторов, из-за которых ты можешь питаться правильно, но всё равно недополучать необходимого. Это происходит по следующим причинам:

  • различные дисфункции пищеварения — недопереваривание и недостаточное всасывание в ЖКТ (при гастритах, колитах, язве и иных патологиях);
  • замедленная транспортировка аминокислот (при сбое гормональной регуляции, наследственных заболеваниях обмена, при сахарном диабете, некоторых патологических состояниях) и того, как глюкокортикоиды влияют на БО — тормозят синтез и усиливают распад;
  • недостаточность синтеза или обмена на местах, вследствие дефицита определённых гормонов, болезней ЦНС;
  • дисбаланс распада и выведения продуктов метаболизма, задержка метаболитов в организме.

Самое главное, что нужно помнить: человеческому организму необходимы 20 аминокислот (у растений их — 12), и отсутствие хотя бы одной полностью нарушает синтез.

Именно поэтому даже полностью здоровый изначально веган рискует непоправимо нарушить свой БО, недополучая те протеины, которых недостаточно в растительной пище, или получая их медленнее, чем если бы он ел пищу животную.

Про углеводный обмен (УО) я писал тут.

Нарушение белкового обмена: первый враг — болезни пищеварения

Поскольку белки поступают к нам с пищей, первым фактором сбоя будет недостаточность факторов, расщепляющих белки в желудке и кишечнике:

  • мало соляной кислоты, ряда пищеварительных ферментов — при гипоцидном гастрите, атрофии слизистой желудка, раковых состояниях, панкреатите и ряда других заболеваний;
  • ускорение прохождения пищи по ЖКТ при энтероколитах и прочих страданиях, усиливающих перистальтику;
  • уменьшение полезной площади для всасывания, из-за резекции части ЖКТ (удаление отрезка кишечника из-за опухоли, воспаление слизистой);
  • из-за того, что недопереваренный белок быстро попадает в толстый отдел, микрофлора начинает его расщеплять, чего не должно быть в норме (следствие — гнилостный процесс, образование ядовитых соединений и общая интоксикация).
Читайте так же:  Какие витамины в зеленом

Нарушение белкового обмена: переварили — что дальше?

Нарушение белкового обмена — задержка аминокислот в плазме крови. В норме они находятся в кровотоке лишь короткое время, для того, чтобы их донесло до нужного органа, который поглощает их для удовлетворения своих нужд. В этом велика роль печени. Большую часть поглощает именно она, меньше — скелетные мышцы, сердечная мышца, почки и прочие органы.

Друзья! Я, Андрей Ерошкин, проведу для вас мега интересные вебинары, записывайтесь и смотрите!

Темы предстоящих вебинаров:

  • Как похудеть без силы воли и чтобы вес не вернулся снова?
  • Как снова стать здоровым без таблеток, естественным способом?
  • Откуда берутся камни в почках и что делать, чтобы они не появлялись снова?
  • Как перестать ходить по гинекологам, родить здорового ребёнка и не состариться в 40 лет?

При патологиях печени (гепатит, цирроз, жировая дистрофия) по показателям крови наблюдается избыток аминокислот. Дисбаланс приводит к повышенному выведению белка почками, что им совершенно не полезно, так как увеличивает плотность мочи.

Кроме того, при задержке в крови различных аминокислот могут возникать разные патологии в тканях тела. Например, из-за повышенного уровня тирозина может развиться злокачественная гипертония.

Методы исследования белкового состава крови могут точно указать, что присутствуют серьёзные печёночные патологии.

Лечение подобных хворей, как правило, очень осложнено.

Процесс строительства

Синтез белков — сложный и ответственный процесс. Его можно назвать наиболее важным этапом обмена в любом живом существе. Даже небольшой сбой способен оказаться роковым. Это как в часах: не поставил одну маленькую пружинку — не работает весь механизм.

Я приведу два красноречивых факта:

  1. Неправильное количественное сочетание аминокислот резко снижает синтез нужного белка.
  1. Полное отсутствие хотя бы одной из них целиком прерывает синтез.

Причины их недостаточности — полный голод или неполноценная еда, в которой нет правильного количественного сочетания. Есть и другие тормозящие синтез факторы. К ним относятся, в частности, нарушения структуры ДНК, отвечающей за формирование белковых молекул.

  • генетические (наследственные);
  • внешние, в результате патогенных факторов.

Во втором случае, это может быть:

  • употребление некоторых антибиотиков (вот почему их не следует принимать без специального назначения врача);
  • ионизирующее излучение (повышенный радиоактивный фон);
  • ультрафиолет («камушек в огород» тем, кто любит загорать);
  • влияние инсулина;
  • некоторые яды, влияющие на процессы БО;
  • злоупотребление гормональными препаратами.

И наконец, синтез регулирует ЦНС и железы внутренней секреции. Поскольку именно они отвечают за строительство, руководя этим процессом через ферменты, сбои могут быть на двух этапах:

  • при болезнях ЦНС и отделов головного мозга, отвечающих за регуляцию обмена;
  • при недостаточной работе эндокринных желёз, которые не могут адекватно реагировать на сигналы ЦНС.

Например, недостаток соматотропного гормона (его даёт гипофиз) задерживает рост. А рост — это как раз интенсивное создание белковых молекул, которые формируют наше тело.

Взаимообмен, распад и разложение

В живой системе, помимо строительства, происходит ещё и постоянный обмен аминокислотами. Это необходимо для поддержания функционирования организма в целом. При некоторых патологических состояниях, внутреннее равновесие нарушается. Например, если тебе не хватает витамина В6, а ты — беременная женщина — страдает обмен. То же самое может происходить при бесконтрольном приёме сульфаниламидов.

Белковое голодание может привести к циррозу печени, нарушению образования мочевины (связывания опасного для нас аммиака) и выведению последней. И тут мы вплотную подходим к последнему этапу БО: распаду и выведению из организма конечных продуктов метаболизма.

Белки в нас постоянно синтезируются и распадаются, и у этого процесса должна быть определённая скорость. Убыстрение и замедление или нарушение белкового обмена приводят к тяжёлым болезням.

Причинами их могут быть:

  • гиповитаминозы (особенно витамина С, фолиевой кислоты и группы В), именно они приводят к задержке метаболитов в теле;
  • симптом высокой температуры, воспалительные процессы, опухоли, травмы, ожоги — приводят к ускорению распада;
  • гепатит, цирроз — могут приводить к нарушению связывания аммиака (образования мочевины), что приводит к тяжёлым отравлениям, вплоть до комы;
  • наследственные и приобретённые ферментные сбои связывания аммиака;
  • голодание, авитаминоз жирорастворимого витамина Е, лихорадочные состояния, тиреотоксикоз приводят к недостатку образования и вывода другого метаболита — креатинина;
  • нефрит может вызвать задержку в организме мочевины и других азотистых продуктов распада.

Помимо перечисленного, существует ряд наследственных заболеваний, связанных с выведением продуктов распада, а так же неправильный обмен отдельных аминокислот.

Тема обширная, говорить можно долго. Но я подведу итоги: нет ни одного органа, ни одной системы, которая не страдала бы при болезнях БО. Поэтому так важно сделать всё возможное, чтобы убрать провоцирующие факторы. Их вызывает неправильная организация питания, несбалансированный стол, ожирение.

Надеюсь, ты немного разобрался из-за чего происходит нарушение белкового обмена и сделал выводы.

Всем в помощь — мой «Курс Активного Похудения» , в нём есть ценные советы и замечания на тему равновесия «питание-здоровье-жизнь». Очень многое — в наших руках, и мы в состоянии сделать себе лучше. Чего я всем от души и желаю.

Видео (кликните для воспроизведения).

На сегодня все.
Спасибо, что дочитали мой пост до конца. Делитесь этой статьей со своими друзьями. Подписывайтесь на мой блог.
И погнали дальше!

Источники


  1. История физической культуры и спорта / ред. В.В. Столбов. — М.: Физкультура и спорт, 2014. — 359 c.

  2. Лысов, П. К. Анатомия (с основами спортивной морфологии). В 2 томах. Том 2 / П.К. Лысов, Д.Б. Никитюк, М.Р. Сапин. — М.: Медицина, 2003. — 416 c.

  3. Диетология. Руководство / Коллектив авторов. — М.: Питер, 2017. — 712 c.
  4. Мазнев, Н.И. Большая энциклопедия мужского здоровья / Н.И. Мазнев. — М.: Эксмо, 2009. — 672 c.
Нарушение обмена аминокислот и белков
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here