Непрямое окислительное дезаминирование аминокислот

Сегодня предлагаем ознакомится со статьей на тему: непрямое окислительное дезаминирование аминокислот с профессиональным описанием и объяснением.

Дезаминирование аминокислот

Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака.

Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты. Для животных тканей, растений и большинства аэробных микроорганизмов преобладающим типом реакций является окислительное дезаминирование аминокислот, за исключением гис-тидина, подвергающегося внутримолекулярному дезаминированию.

[3]

Рассмотрим более подробно механизм окислительного дезаминирования аминокислот, протекающего в две стадии.

Первая стадия является ферментативной и завершается образованием неустойчивого промежуточного продукта (иминокислота), который на второй стадии спонтанно без участия фермента, но в присутствии воды распадается на аммиак и α-кетокислоту. Следует указать, что оксидазы аминокислот (L- и D-изомеров) являются сложными флавопротеинами, содержащими в качестве кофермента ФМН или ФАД, которые выполняют в этой реакции роль акцепторов двух электронов и протонов, отщепляющихся от аминокислоты. Оксидазы L-аминокислот могут содержать как ФМН, так и ФАД, а оксидазы D-аминокислот – только ФАД в качестве простетической группы. Схематически реакции окислительного дезаминирования аминокислот с участием коферментов могут быть представлены в следующем виде:

Восстановленные флавиннуклеотиды оксидаз L- и D-аминокислот могут непосредственно окисляться молекулярным кислородом. При этом образуется перекись водорода, которая подвергается расщеплению под действием каталазы на воду и кислород.

Впервые в лаборатории Д. Грина из ткани печени и почек крыс была выделена оксидаза, катализирующая дезаминирование 12 природных (L-изомеров) аминокислот. Оказалось, однако, что этот фермент имеет оптимум действия в щелочной среде (рН 10,0) и при физиологических значениях рН его активность на порядок ниже, чем при рН 10,0. В тканях животных и человека отсутствует подобная среда, поэтому оксидазе L-ами-нокислот принадлежит, вероятнее всего, ограниченная роль в процессе окислительного дезаминирования природных аминокислот. В животных тканях оксидазным путем со значительно большей скоростью дезами-нируются D-изомеры аминокислот. Эти данные подтвердились после того, как из животных тканей был выделен специфический фермент оксидаза D-аминокислот, который в отличие от оксидазы L-аминокислот оказался высокоактивным при физиологических значениях рН среды. Не до конца ясным остается вопрос о том, каково значение столь активной оксидазы D-аминокислот в тканях, если поступающие с пищей белки и белки тела животных и человека состоят исключительно из природных (L-изомеров) аминокислот.

В животных тканях Г. Эйлером открыт высокоактивный при физиологических значениях рН специфический фермент (глутаматдегидрогеназа), катализирующий окислительное дезаминирование L-глутаминовой кислоты. Он является анаэробным ферментом и чрезвычайно широко распространен во всех живых объектах. В качестве кофермента глутаматдегидрогеназа содержит НАД (или НАДФ). Реакция включает анаэробную фазу дегидрирования глутаминовой кислоты с образованием промежуточного продукта – иминоглутаровой кислоты и спонтанный гидролиз последней на аммиак и α-кетоглутаровую кислоту в соответствии со следующей схемой:

Первая стадия окисления глутаминовой кислоты аналогична реакции окислительного дезаминирования. Восстановленный НАДН далее окисляется при участии флавиновых ферментов и цитохромной системы (см. главу 9) с образованием конечного продукта воды. Образовавшийся аммиак благодаря обратимости ферментативной реакции, но обязательно в присутствии восстановленного НАДФН может участвовать в синтезе глу-тамата из α-кетоглутаровой кислоты. Различают три разных типа глутаматдегидрогеназ: один из них использует в качестве кофермента как НАД, так и НАДФ (клетки животных); два других используют или НАД, или НАДФ (микроорганизмы, клетки растений и грибов), соответственно катализируя дезаминирование или биосинтез глутамата.

Глутаматдегидрогеназа животных тканей является одним из наиболее изученных ферментов азотистого обмена. Это олигомерный фермент (мол. масса 312000), состоящий из 6 субъединиц (мол. масса каждой около 52000) и проявляющий свою основную активность только в мультимерной форме. При диссоциации этой молекулы на субъединицы, наступающей легко в присутствии НАДН, ГТФ и некоторых стероидных гормонов, фермент теряет свою главную глутаматдегидрогеназную функцию, но приобретает способность дезаминировать ряд других аминокислот. Это свидетельствует об аллостерической природе глутаматдегидрогеназы, действующей как регуляторный фермент в аминокислотном обмене.

Помимо перечисленных 4 типов дезаминирования аминокислот и ферментов, катализирующих эти превращения, в животных тканях и печени человека открыты также три специфических фермента (серин- и треонин-дегидратазы и цистатионин-γ-лиаза), катализирующих неокислительное дезаминирование соответственно серина, треонина и цистеина.

Конечными продуктами реакции являются пируват и α-кетобутират, аммиак и сероводород. Поскольку указанные ферменты требуют присутствия пиридоксальфосфата в качестве кофермента, реакция неокислительного дезаминирования, вероятнее всего, протекает с образованием шиффовых оснований как промежуточных метаболитов.

Наиболее изучен фермент треониндегидратаза, которая оказалась не только аллостерическим ферментом, но наряду с триптофан-2,3-диокси-геназой и тирозинаминотрансферазой индуцибельным ферментом в животных тканях (индукция синтеза ферментов de novo является общим свойством микроорганизмов). Так, при скармливании крысам гидролизата казеина активность треониндегидратазы печени повышается почти в 300 раз. Этот синтез тормозится ингибитором белкового синтеза пуромицином. Поскольку индукция почти полностью тормозится также глюкозой пищи, треонингидратаза, по-видимому, является ответственной за глюконеогенез, так как α-кетобутират легко превращается в пируват и соответственно в глюкозу.

Непрямое дезаминирование (трансдезаминирование) АК

Непрямое дезаминирование — это дезаминирование, которое происходит в 2 стадий с участием нескольких ферментов. Оно характерно для большинства АК, так как они не способны к прямому дезаминированию (нет ферментов).

На первой стадии происходит одна и несколько реакций переаминирования с участием аминотрансфераз, в результате аминогруппа АК переходит на кетосоединение (α-КГ, ИМФ).

На второй стадии происходит реакция дезаминирования аминосоединения (глу, АМФ), в результате чего образуется аммиак.

Последовательность реакций непрямого дезаминирования зависит от набора ферментов в тканях.

Непрямое дезаминирование в печени

Непрямое дезаминирование АК происходит при участии 2 ферментов: аминотрансферазы и глу-ДГ. Аминогруппы АК в результате трансаминирования переносятся на α-КГ с образованием глутамата, который затем подвергается прямому окислительному дезаминированию.

Читайте так же:  Л карнитин будь здоров

Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм АК, так и возможность образования практически любой АК из соответствующей α-кетокислоты.

При энергодефиците АДФ активирует Глу-ДГ, что усиливает катаболизм АК и образование а-кетоглутарата, поступающего в ЦТК как энергетический субстрат.

Таким образом, Глу-ДГ играет ключевую роль в регуляции обмена АК и энергии.

Непрямое дезаминирование в мышцах (и нервной ткани)

В мышечной ткани активность глу-ДГ низка, поэтому при интенсивной физической нагрузке функционирует ещё один путь непрямого дезаминирования с участием цикла ИМФ-АМФ.

Можно выделить 4 стадии этого процесса:

  1. трансаминирование с а-кетоглутаратом, образование глутамата (аминотрансфераза);
  2. трансаминирование глутамата с ЩУК, образование аспартата (АСТ);
  3. реакция переноса аминогруппы от аспартата на ИМФ (инозинмонофосфат), образование АМФ и фумарата (аденилосукцинасинтаза и аденилосукцинатлиаза);
  4. гидролитическое дезаминирование АМФ (АМФ-дезаминаза).

Этот путь дезаминирования преобладает в мышцах при интенсивной работе, в результате которой накапливается молочная кислота. Выделяющийся аммиак предотвращает закисление среды в клетках, вызванное образованием лактата.

[1]

Прямое окислительное дезаминирование. Окислительное дезаминирование некоторых аминокислот катализируется флавин-зависимыми дегидрогеназами

Окислительное дезаминирование некоторых аминокислот катализируется флавин-зависимыми дегидрогеназами. Они названы оксидазами аминокислот из-за их способности использовать в качестве конечного акцептора водородов молекулярный кислород с образованием при этом пероксида водорода.

В окислительном дезаминировании первая стадия является ферментативной с образованием промежуточного продукта — иминокислоты, которая спонтанно, без участия фермента, распадается на аммиак и альфа-кетокислоту.

Этот тип реакций наиболее распространен в тканях.

Прямое окислительное дезаминирование характерно для глутаминовой кислоты:

Первая стадия катализируется ферментом глутаматдегидрогеназой (анаэробный фермент). Вторая стадия протекает спонтанно. Реакция обратима: —-> окислительное дезаминирование, + , а активатором является АДФ. ГДГ, обладает высокой активностью. ГДГ локализована в митохондриях и может использовать в качестве кофермента НАД или НАДФ. Работой этого фермента завершается непрямое дезаминирование многих аминокислот и аммиак, высвобождаемый в этой реакции, протекающей в печени, используется для синтеза мочевины.

Этот фермент катализирует и обратную реакцию, обеспечивая аминирование альфа-кетоглутаровой кислоты свободным аммиаком, что важно в механизмах обезвреживания аммиака и позволяет использовать азот аммиака для синтеза аминокислот.

Т. о. ГДГ выполняет следующие функции:

1. Осуществляет связь а/к обмена с ЦТК через альфа-КТК.

2. Обеспечивает связывание аммиака.

3. Обеспечивает синтез всех заменимых а/к.

4. Обеспечивает перекачку протонов с НАДН на НАДФН

Все остальные а/к могут окисляться и дезаминироваться только непрямым путем (т. е. через дополнительную стадию трансаминирования)

Механизм трансаминирования:

Непрямое дезаминирование — основной путь дезаминирования аминокислот.

Большинство аминокислот теряют свою аминогруппу не путем описанного выше прямого дезаминирования, а передают аминогруппу на кетокислотный акцептор. Эти реакции катализируются группой ферментов, получивших название трансаминаз.Коферментом их является пиридоксальфосфат. Это главный путь удаления азота у аминокислот. Выделены трансаминазы, катализирующие переаминирование большинства аминокислот. После поступления пищевых аминокислот из воротной вены, например, значительная часть их в печени подвергается переаминированию. Исключением являются аминокислоты с разветвленным углеводородным радикалом, для которых в печени нет соответствующих трансаминаз, о чем говорит более высокая концентрация таких аминокислот в крови, оттекающей от печени по сравнению с концентрацией в крови воротной вены.

Стратегия реакции переаминирования в клетке— аминогруппы разных донорных аминокислот переносятся на ограниченное число альфа- кетокислотных акцепторов, что позволяет выделить центральный путь метаболизма аминокислот. Большинство трансаминаз использует альфа-кетоглутаровую кислоту как основной акцептор аминогруппы. Трансаминазы же обычно называют по аминокислотам, которые служат донором аминогруппы (как правило альфа-кетоглутаровой кислоты, хотя оксалоацетат и ПВК также можно рассматривать в качестве важных акцепторов аминогрупп). Наиболее изученными трансаминазами являются:

a. аланиновая трансаминаза (АЛТ), известна также как глутамат:пируват трансаминаза. Следует заметить, что реакции переаминирования обратимы. В скелетной мышце пируват — главный акцептор для аминогрупп от глутаминовой кислоты, что приводит к образованию больших количеств аланина (последний транспортируется к печени). В печени аланин отдает аминогруппу альфа-кетоглутаровой кислоте, что вновь ведет к образованию ГЛУ.

б. аспарагиновая трансаминаза (АСТ), известна как глутамат:оксалоацетат трансфераза. Эта реакция важна для печени, где оксалоацетат действует как акцептор аминогрупп, получаемых от ГЛУ. Продукт реакции аспартат является субстратом для синтеза мочевины. Эта реакция, но протекающая в обратном направлении, важна для сердечной мышцы.

Роль трансаминаз в перносе аминного азота на мочевину показана на

Непрямое дезаминирование аминокислот

Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на a-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования или непрямого дезаминирования. Он происходит с участием 2 ферментов аминотрансферазы и глутаматдегидрогеназы. Значение этих реакций в обмене аминокислот очень велико, так как непрямое дезаминирование – основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей a-кетокислоты. Обратная последовательность реакций, при которой происходит синтез аминокислот из кетокислот, получила название трансреаминирования.

[2]

В мышечной ткани активность глутаматдегидрогеназы низка, поэтому в этих клетках при интенсивной физической нагрузке функционирует еще один путь непрямого дезаминирования с участием цикла ИМФ-АМФ. Образующийся при этом аммиак предотвращает закисление среды в клетках, вызванное образованием лактата.

Дата добавления: 2015-07-18 ; просмотров: 350 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Непрямое дезаминирование аминокислот

Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на a-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования или непрямого дезаминирования. Он происходит с участием 2 ферментов аминотрансферазы и глутаматдегидрогеназы. Значение этих реакций в обмене аминокислот очень велико, так как непрямое дезаминирование – основной способ дезаминирования большинства аминокислот. Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей a-кетокислоты. Обратная последовательность реакций, при которой происходит синтез аминокислот из кетокислот, получила название трансреаминирования.

Читайте так же:  Применение аминокислот в медицине

В мышечной ткани активность глутаматдегидрогеназы низка, поэтому в этих клетках при интенсивной физической нагрузке функционирует еще один путь непрямого дезаминирования с участием цикла ИМФ-АМФ. Образующийся при этом аммиак предотвращает закисление среды в клетках, вызванное образованием лактата.

Декарбоксилирование аминокислот

Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию. Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента. Продуктами реакции являются СО2 и амины, которые оказывают выраженное биологическре действие на организм, и поэтому названы биогенными аминами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Биогенные амины

Гистамин образуется при декарбоксилировании гистидина в тучных клетках соединительной ткани. В организме человека выполняет следующие функции:

· стимулирует секрецию желудочного сока и слюны;

· повышает проницаемость капилляров, вызывает отеки, снижает АД, но увеличивает внутричерепное давление, вызывая головную боль;

· сокращает гладкую мускулатуру легких, вызывает удушье;

· участвует в формировании воспалительных реакций – расширение сосудов, покраснение, отечность ткани;

· вызывает аллергическую реакцию;

Серотонин – образуется при декарбоксилировании и дальнейшем окислении триптофана. Биологические функции:

· оказывает мощное сосудосуживающее действие;

· повышает кровяное давление;

· участвует в регуляции температуры тела, дыхания;

· медиатор нервных процессов в ЦНС (обладает антидепрессантным действием).

Дофамин образуется при декарбоксилировании диоксифенилаланина (ДОФА). При дальнейшем окислении и метилировании образуюся адреналин и норадреналин. Дофамин является нейромедиатором, контролирующим произвольные движения, эмоции и память. В высоких концентрациях дофамин стимулирует адренорецепторы, увеличивает силу сердечных сокращений, повышает сопротивление периферических сосудов (с параллельным увеличением почечного и коронарного кровотока). Кроме того, дофамин тормозит секрецию пролактина и соматотропина.

В нервных клетках декарбоксилирование глутамата приводит к образованию g-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга. Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К + , что вызывает торможение нервного импульса.

Цикл превращений ГАМК в мозге включает три сопряженных реакции, получивших название ГАМК-шунта. Первую катализирует глутаматкарбоксилаза. Эта реакция является регуляторной и обеспечивает скорость образования ГАМК в клетках мозга. Последующие 2 две реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат затем используется в цикле Кребса. Инактивация ГАМК возможна и окислительным путем под действием моноамионоксидазы.

При декарбоксилировании орнитина образуется путресцин, который является предшественником биологически активных веществ спермина и спермидина. Путресцин, спермин и спермидин имеют большой положительный заряд, легко связываются с отрицательно заряженными молекулами ДНК и РНК, входят в состав хроматина и участвуют в репликации РНК. Кроме того эти вещества стабилизируют структуру мембран клеток.

Видео (кликните для воспроизведения).

Этаноламин образуется при декарбоксилировании серина. В организме используется для синтеза холина, ацетилхолина, фосфатидилэтаноламинов, фосфатидилхолинов.

При декарбоксилировании лизина образуется кадаверин, который является трупным ядом.

Для осуществления биологической функции в организме требуется определенная концентрация биогенных аминов. Избыточное их накопление может вызвать различные патологические отклонения. В связи с этим большое значение приобретают механизмы их инактивации:

· окисление ферментами моноаминооксидазами (МАО) (кофермент ФАД). Таким путем чаще всего инактивируются дофамин, норадреналин, серотонин и ГАМК. При этом происходит окислительное дезаминирование биогенных аминов с образованием альдегидов, а затем соответствующих кислот, которые выводятся почками.

· метилирование с участием S-аденозилметионина. Таким путем чаще всего инактивируются катехоламины – фермент катехол-орто-метилтрансфераза (КОМТ)

· окисление с помощью диаминооксидаз – инактивация гистамина, а также короткоцепочечных алифатических диаминов (путресцина и кадаверина).

Дата добавления: 2015-12-22 ; просмотров: 909 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Окислительное дезаминирование глутамата

Дезаминирование аминокислот

Биологическое значение трансаминирования

Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование – заключительный этап синтеза заменимых аминокислот из соответствующих кетокислот, если они необходимы в данный момент клеткам. В результате происходит перераспределение аминнного азота в тканях. При трансаминированиии общее количество аминокислот в клетке не меняется.

Оксидазы D-аминокислот. При физиологических значениях рН в тканях высоко активны оксидазы D-аминокислот. Они также обнаружены в почках и печени и находятся в микросомах. Роль оксидаз D-аминокислот невелика и до конца не понятна, потому что в белки пищи и тканей человека входят только природные L-аминокислоты.

В печени человека присутствуют специфические ферменты, катализирующие реакции дезаминирования серина, треонина, цистеина и гистидина неокислительным путем.

Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.

Прямое дезаминирование – непосредственное отщепление аминогруппы от аминокислоты без промежуточных посредников. В живой природе возможны следующие типы прямого дезаминирования: окислительное, восстановительное, гидролитическое и путем внутримолекулярной перестройки. Но у человека дезаминирование происходит преимущественно окислительным путем в результате чего образуется соответствующая a-кетокислота и выделяется аммиак. Процесс идет с участием ферментов оксидаз. Выделены оксидазы L-аминокислот, превращающие L-изомеры аминокислот, и D-оксидазы.

Читайте так же:  Последовательность аминокислот в молекуле

Наиболее активно в тканях происходит дезаминирование глутаминовой кислоты. Реакцию катализирует фермент глутаматдегидрогеназа, который несколько отличается от типичных оксидаз L-аминокислот:

· в качестве кофермента содержит НАД + или НАДФ + ;

· обладает абсолютной специфичностью;

· локализована в митохондриях.

Реакция идет в 2 этапа. Вначале происходит дегидрирование глутамата и образование a-иминоглутарата, затем – неферментативное гидролитическое отщепление имминогруппы в виде аммиака, в результате чего образуется a-кетоглутарат. Окислительное дезаминирование глутамата – обратимая реакция и при повышении концентрации аммиака может протекать в обратном направлении, как восстановительное аминирование a-кетоглутарата.

Глутаматдегидрогеназа очень активна в митохондриях клеток практически всех органах, кроме мышц. Она является регуляторным ферментом аминокислотного обмена. Аллостерические ингибиторы – АТФ, ГТФ, НАД(Ф)Н. Высокие концентрации АДФ активируют фермент. Таким образом, низкий энергетический уровень в клетке стимулирует разрушение аминокислот и образование a-кетоглутарата, поступающего в ЦТК как энергетический субстрат.

Глутаматдегидрогеназа может индуцироваться стероидными гормонами (кортизолом) и ингибироваться эстрогенами и тироксином.

Не нашли то, что искали? Воспользуйтесь поиском:

Дезаминирование

Дезамин и рование, отщепление (элиминирование) аминогруппы (NH2) из органических соединений. Дезаминирование сопровождается замещением аминогруппы какой-либо др. группой (например, Н, ОН, OR, Hal) или образованием двойной связи. Дезаминирование производят, в частности, действием на первичные амины азотистой кислотой. При этом из алифатических аминов образуются спирты (I) и олефины (II), например:

Дезаминирование циклоалифатических аминов сопровождается расширением или сужением цикла (см. Демьянова перегруппировка). Ароматические амины дают с азотистой кислотой (в присутствии сильных неорганических кислот) диазония соли. Такие реакции, как гидролиз, гидрогенолиз, расщепление четвертичных аммониевых солей, пиролитические и др., также приводят к дезаминированию. Важную роль играет дезаминирование в процессах жизнедеятельности животных, растений и микроорганизмов. Для d-aминокислот характерно окислительное дезаминирование с образованием аммиака и a -кетокислот. Окислительному дезаминированию подвергаются также амины. Оксидазы природных аминокислот, кроме глутаматдегидрогеназы, дезаминирующей L-глутаминовую кислоту, в животных тканях мало активны. Поэтому большинство L-аминокислот подвергается непрямому дезаминированию путём предварительного переаминирования с образованием глутаминовой кислоты, которая затем претерпевает окислительное дезаминирование или др. превращения. Др. типы дезаминирования — восстановительное, гидролитическое (дезаминирование аминопроизводных пуринов, пиримидинов и сахаров) и внутримолекулярное (дезаминирование гистидина) — в большей степени распространены у микроорганизмов.

Лит.: Збарский Б. И., Иванов И. И., Мардашев С. P., Биологическая химия, 4 изд., Л., 1965.

Дезаминирование аминокислот

Суть дезаминирования заключается в расщеплении аминокислот по действием ферментов на аммиак и безазотистый остаток (жирные кислоты, оксикислоты, кетокислоты). Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение — мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования, в процессах глюконеогенеза, кето-генеза, в анаплеротических реакциях для восполнения убыли метаболитов ОПК, в реакциях окисления до СО2 и Н2О. Дезаминирование может идти в виде восстановительного, гидролитического, окислительного и внутримолекулярного процессов. Последние два типа преобладают у человека и животных.

Окислительное дезаминирование подразделяется на две стадии. Первая стадия является ферментативной, она заканчивается образованием неустойчивого промежуточного продукта — иминокислоты, которая во второй стадии спонтанно в присутствии воды распадается на аммиак и a-кетокислоту. Ферменты катализирующие этот процесс, содержат в качестве простетической группы НАД либо ФАД.

В организме человека наиболее активно протекает дезаминирование глутаминовой кислоты под действием фермента глутаматдегидрогеназы, находящегося в митохондрияхклеток всех тканей. В результате этого процесса образуется a-кетоглутаровая кислота, принимающая участие во многих процессах обмена веществ.

Большинство аминокислот не способно дезаминироваться в одну стадию, подобно Глу. Аминогруппы таких аминокислот в результате трансаминирования переносятся на α-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому окислительному дезаминированию. Такой механизм дезаминирования аминокислот в 2 стадии получил название трансдезаминирования, или непрямого дезаминирования. Непрямое дезаминирование аминокислот происходит при участии 2 ферментов: аминотрансферазы (кофермент ПФ) и глутаматдегидрогеназы (кофермент NAD + ).

Значение этих реакций в обмене аминокислот очень велико, так как непрямое дезаминирование — основной способ дезаминирования большинства аминокислот.Обе стадии непрямого дезаминирования обратимы, что обеспечивает как катаболизм аминокислот, так и возможность образования практически любой аминокислоты из соответствующей α-кетокислоты.

В мышечной ткани активность глутаматдегидрогеназы низка, поэтому в этих клетках при интенсивной физической нагрузке функционирует ещё один путь непрямого дезаминирования с участием цикла ИМФ-АМФ. Вначале происходит перенос аминогруппы аминокислот на аспартат, затем на инозиновую кислоту (ИМФ) и в завершение — дезаминирование АМФ. Представленная схема отражает последовательность реакций непрямого неокислительного дезаминирования.

Можно выделить 4 стадии процесса:

-трансаминирование с α-кетоглутаратом, образование глутамата;

-трансаминирование глутамата с оксалоацета-том (фермент ACT), образование аспартата;

-реакция переноса аминогруппы от аспартата на ИМФ (инозинмонофосфат), образование АМФ и фумарата;

-гидролитическое дезаминирование АМФ.

Перенос аминогруппы от аспартата и синтез АМФ происходят следующим образом.

Реакция дезаминирования адениловой кислоты происходит под действием фермента АМФ дезаминазы.

Этот путь дезаминирования преобладает в мышцах при интенсивной работе, в результате которой накапливается молочная кислота. Выделяющийся аммиак предотвращает закисление среды в клетках, вызванное образованием лактата.

Биологическая роль непрямого дезаминирования. А — при катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогена-зы, в результате чего получаются а-кетоглутарат и аммиак; Б — при необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты.

Читайте так же:  Популярные жиросжигатели для женщин

ДЕЗАМИНИРОВАНИЕ

ДЕЗАМИНИРОВАНИЕ — один из основных этапов обмена азотистых соединений; представляет собой процесс отщепления аминогруппы (NH2-группы) от органических соединений — аминокислот, аминов, аминопуринов, аминопиримидинов, их нуклеозидов и нуклеотидов и т. д., сопровождающийся замещением NH2-группы какой-либо другой. В обмене веществ человека и животных Д. играет большую роль. В животных и растительных организмах и у микроорганизмов Д. происходит в результате действия специфических ферментов. Аммиак, образующийся при Д., далее превращается в конечные продукты азотистого обмена (мочевину, мочевую к-ту и др.) или используется для синтеза новых аминокислот и других азотистых соединений, необходимых для жизнедеятельности организма (см. Азотистый обмен). Часть аммиака используется для нейтрализации образующихся в организме к-т и выводится с мочой в виде солей аммония (см. Кислотно-щелочное равновесие).

В небиол. системах Д. осуществляется действием хим. агентов, таких, как, напр., азотистая к-та или другие нитрозильные соединения. Д. аминокислот путем их окисления с образованием CO2 и соответствующих альдегидов происходит под действием O2 или H2O2 в присутствии солей тяжелых металлов, играющих роль катализаторов. Аналогичные продукты образуются в результате Д. аминокислот при их взаимодействии с хинонами, аллоксаном, изатином, нингидрином (см.). При взаимодействии азотистой к-ты с NH2-группой аминокислот и первичных (алифатических) аминов освобождается молекулярной азот:

Эта реакция положена в основу метода определения NH2-групп аминокислот и аминов по Ван-Слайку (см. Ван-Слайка методы). Ароматические амины реагируют с HNO2, образуя диазосоединения (см.).

Существует несколько типов биохим. процессов Д.

Содержание

Окислительное дезаминирование аминокислот

Одним из главных видов Д. у человека, млекопитающих и других классов животных является окислительное Д.:

В 1944 г. Грин (D. Green) и сотр. обнаружили в печени ряда животных фермент глициноксидазу, избирательно катализирующую Д. глицина (см.) с образованием глиоксиловой кислоты (см.) и аммиака. Эта оксидаза представляет собой флавопротеид, содержащий рибофлавин-фосфат (ФМН). В том же году Грин и сотр. выделили из почек крысы оксидазу L-аминокислот. В отличие от оксидазы D-аминокислот, она оказалась в физиол, условиях малоактивной и менее распространенной в природе. Оксидаза L-аминокислот (почечная) окисляла обычные монокарбоновые L-альфа-аминокислоты (кроме глицина, треонина и серина) и более активно — соответствующие L-альфа-оксикислоты; диамино- и дикарбоновые аминокислоты не дезаминировались этим ферментом. Коферментом оксидазы L-аминокислот, выделенной из почек, является ФМН. Активные оксидазы L-аминокислот получены в очищенном и кристаллическом виде из ядов и тканей змей и из микроорганизмов. Оксидаза L-аминокислот из яда змей содержит в качестве кофермента две молекулы ФАД на одну молекулу фермента. В опытах с очищенными препаратами оксидаз D- и L-аминокислот реакция протекает по уравнению:

Как in vivo, так и в опытах с неочищенными препаратами оксидаз L-и D-аминокислот, содержащих обычно в качестве примеси фермент каталазу (КФ 1.11.1.6), расщепляющую перекись водорода, процесс окислительного Д. аминокислот протекает по суммарному уравнению 1. Механизм процесса схематически может быть представлен следующими реакциями:

В первой, ферментативной, фазе реакции аминокислота отдает два водородных атома акцептору (ФАД или ФМН) и превращается в альфа-иминокислоту. Водород далее передается через систему дыхательных ферментов (см.) к конечному акцептору — кислороду, образуя H2O (см. Окисление биологическое). Во второй, самопроизвольной, фазе реакции нестойкая иминокислота гидролизуется с образованием кетокислоты и аммиака. Особые специфические флавинсодержащие оксидазы, активно дезаминирующие ароматические L-ами-нокислоты, L-диаминокислоты и глицин, обнаружены в тканях печени и почек птиц. В 1937 г. X. Эйлер-Хелыгин и сотр. впервые выделили фермент глутаматдегидрогеназу, специфически дезаминирующую L-глутаминовую к-ту до альфа-кетоглутаровой к-ты и аммиака. Этот фермент найден у человека, животных, растений и микроорганизмов. Он обнаружен почти во всех тканях млекопитающих, наиболее активен в тканях печени, почек и сердца. Его действие обратимо: в организме при физиол, условиях в присутствии альфа-кетоглутаровой к-ты и аммиака реакция направлена преимущественно в сторону синтеза глутаминовой кислоты (см.). Фермент получен из разных источников в кристаллическом виде. В его действии принимает участие НАД или НАДФ (см. Коферменты).

Окислительным путем дезаминируются также амины (см.), образующиеся в организме при декарбоксилировании (см.) аминокислот. Многие амины токсичны, поэтому их Д. имеет большое физиол, значение для организма. Д. аминов протекает при участии соответствующих аминоксидаз по уравнению:

Образующиеся в этой реакции альдегиды превращаются при участии окислительных ферментов в соответствующие к-ты. Известны два основных типа аминоксидаз: моноаминоксидазы (МАО; КФ 1.4.3.4), действующие на первичные, вторичные и третичные амины (напр., изоамиламин, тирамин, адреналин, 5-окситриптамин и др.) и диаминоксидазы (КФ 1.4.3.6), действующие на гистамин, путресцин, кадаверин и др. Эти ферменты найдены в печени, почках, слизистой оболочке кишечника, плазме крови и других тканях животных и человека, а также у растений и у многих бактерий (см. Аминоксидазы, Диаминоксидаза, Моноаминоксидазы). Некоторые аминоксидазы получены в очищенном виде; одни из них относятся к флавопротеидам, а другие (гистаминаза, сперминоксидаза из плазмы крови) — к медьсодержащим протеидам, в каталитическом действии которых, вероятно, участвует пиридоксальфосфат или сходный с ним кофактор.

Непрямое окислительное Д. (транс-дезаминирование) и синтез аминокислот были впервые теоретически предсказаны советским биохимиком

А. Е. Браунштейном в 1937—1939 гг.; впоследствии эти представления были подтверждены экспериментально А. Е. Браунштейном и его сотр., а затем и исследованиями других авторов. Механизм транс дезаминирования состоит из двух последовательных ферментативных реакций. В первой происходит переаминирование (см.) аминокислоты с альфа-кетоглутаровой к-той под действием ферментов аминотрансфераз, или трансаминаз (см. Аминотрансферазы), с образованием L-глутаминовой к-ты и a-кетоаналога исходной аминокислоты. При переаминировании NH2-группа переносится от аминокислоты на альфа-кетоглутаровую к-ту без промежуточного освобождения аммиака. Коферментом трансаминаз является производное витамина B6—пиридоксальфосфат (см. Коферменты). Последний выполняет роль переносчика NH2-группы и атома водорода. Во второй реакции транс-дезаминирования L-глутаминовая к-та дезаминируется в альфа-кетоглутаровую с помощью глутаматдегидрогеназы. Наибольшая активность глутаматдегидрогеназы, важнейшего фермента аминокислотного обмена, у человека сосредоточена в печени. Трансаминазы присутствуют во всех живых клетках человека, животных, растений, микроорганизмов.

Читайте так же:  Креатин и бса вместе

Для доказательства процесса транс-дезаминирования, протекающего в тканях животных, были проведены исследования на модельных ферментных системах, включающих очищенные препараты трансаминаз и глутаматдегидрогеназы и необходимые кофакторы. Большое значение имели также исследования, проведенные с B6-авитаминозными животными, и опыты с использованием ингибиторов реакций переаминирования и образования кетоглутаровой к-ты в клетках. Эти исследования подтвердили, что трансдезаминирование играет преимущественную роль в окислительном распаде аминокислот у млекопитающих.

Гидролитическое дезаминирование

Этот вид Д. аминокислот приводит к образованию альфа-оксикислот по суммарному уравнению 4:

Восстановительное дезаминирование

Этот вид Д. распространен у некоторых спороносных анаэробных бактерий из семейства Clostridium и известен под названием «реакции Стикленда». Процесс протекает по суммарному уравнению 5:

Механизм восстановительного Д. заключается в сопряженной анаэробной окислительно-восстановительной реакции между двумя аминокислотами, из которых одна выступает как донор водорода, а другая — как его акцептор. В результате обе аминокислоты дезаминируются. Напр., реакция между аланином (донор) и глицином (акцептор) складывается схематически из следующих превращений:

Аналогичные реакции наблюдали между другими парами аминокислот. В качестве продуктов реакции из пролина образуется дельта-аминовалериановая к-та, из изолейцина, лейцина, валина — альфа-метилмасляная, изовалериановая и изомасляная соответственно. Ферменты, участвующие в этом виде Д., мало изучены; механизм этого процесса нуждается в уточнении.

Внутримолекулярное дезаминирование

Процесс протекает с образованием ненасыщенной к-ты по суммарному уравнению 6:

У растений и некоторых бактерий таким путем происходит Д. L-аспарагиновой к-ты с помощью широко распространенной аспартат-аммиаклиазы (КФ 4.3.1.1; прежнее название «аспартаза»); в результате из L-аспарагиновой к-ты образуются фумаровая к-та и аммиак. Реакция обратима. Фермент был очищен и изучен; он содержит ионы Mg 2+ и SH-группы. В печени человека и животных аналогичным путем происходит Д. L-гистидина ферментом гистидин-аммиак-лиазой (КФ 4.3.1.3). Гистидин (см.) необратимо дезаминируется в бета-имидазолилакриловую (уроканиновую) к-ту. У некоторых бактерий происходит подобное Д. других аминокислот (напр., ароматических).

Некоторые бета- и гамма-оксиаминокислоты (серин, треонин) и меркаптоаминокислоты (цистеин, метионин) дезаминируются особыми путями при участии специфических ферментов.

Определение активности ферментов, катализирующих различные виды дезаминирования

Определение активности ферментов, катализирующих различные виды дезаминирования, является дополнительным диагностическим тестом при ряде заболеваний. Нарушение процессов Д. в печени и других органах и тканях человека и животных связано с изменением активности ферментов, катализирующих процессы Д. и переаминирования. При заболеваниях, связанных с белковой недостаточностью, наблюдается уменьшение активности ферментов, катализирующих окислительное Д. и переаминирование. Наиболее популярным и широко применимым методом энзимодиагностики в лабораториях и клиниках является определение активности аспартат-(КФ 2.6.1.1) и аланин- (КФ 2.6.1.2) аминотрансфераз (АсАТ и АлАТ) соответственно. Наибольшее содержание АсАТ обнаружено в сердечной мышце, затем (в убывающем порядке) в печени, скелетной мускулатуре, головном мозге, почках, семенниках. Наибольшая активность АлАТ выявлена в печени, поджелудочной железе, сердце и скелетной мускулатуре.

Активность обоих ферментов в сыворотке крови увеличивается при заболеваниях, протекающих с некрозом и повреждением тканей, гл. обр. сердечной мышцы и печени. Активность АсАТ наиболее резко возрастает при инфаркте миокарда, обычно пропорционально величине участка некроза.

При заболеваниях печени в первую очередь и значительно увеличивается активность АлАТ. Особенно резко увеличивается она при вирусном гепатите (максимум на 6—11-й день заболевания), причем активность АлАТ повышается уже в инкубационном периоде, что имеет большое диагностическое значение. Увеличивается активность АсАТ и АлАТ и при метастазах рака в печени; при механических желтухах увеличения активности аминотрансфераз в сыворотке крови не отмечали. В лабораторной диагностике используют величину отношения активности АсАТ к АлАТ. У здоровых людей величина этого коэффициента равна 1,33±0,42; у больных острым вирусным гепатитом — 0,65, при инфаркте миокарда величина коэффициента резко превышает нормальную. Гипераминотрансфераземии отмечаются также при гемолитических анемиях, панкреатитах, отравлениях и пр.

В норме активность АсАТ и АлАТ колеблется от 0,005 до 0,0182 и от 0,0028 до 0,0186 мкмолей субстрата, расщепленного 1 мл сыворотки крови в 1 мин.

Видео удалено.
Видео (кликните для воспроизведения).

Библиография: Березов Т. Т. Обмен аминокислот нормальных тканей и злокачественных опухолей, М., 1969, библиогр.; Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; он же, Главные пути ассимиляции и диссимиляции азота у животных, М., 1957, библиогр.; M e i s t e г A. Biochemistry of the amino acids, v. 1—2, N. Y.—L., 1965, bibliogr.; Sallach H. J. a. F a-hien L. A. Nitrogen metabolism of amino acids, в кн.: Metabolic pathways, ed. by D. М» Greenberg, v. 3, p. 1, N. Y.—L., 1969, bibliogr.; Tabor C. W. a. T a b о г H. 1,4-diaminobutane (putrescine), spermidine, and spermine, Ann. Rev. Biochem., v. 45, p. 285, 1976, bibliogr.

Источники


  1. Барсукова, С. Веселая музыкальная гимнастика. Выпуск 1 / С. Барсукова. — М.: Феникс, 2011. — 202 c.

  2. Гурвич, М. М. Диетология. Полное руководство / М.М. Гурвич. — М.: Эксмо, 2013. — 592 c.

  3. Макаров, Р.Р. Женщине о здоровье / Р.Р. Макаров. — М.: Медгиз, 1961. — 181 c.
  4. Клинические аспекты спортивной медицины. Руководство. — М.: СпецЛит, 2014. — 67 c.
Непрямое окислительное дезаминирование аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here