Образование энергии из аминокислот

Сегодня предлагаем ознакомится со статьей на тему: образование энергии из аминокислот с профессиональным описанием и объяснением.

Взаимосвязь обмена углеводов и аминокислот

Атомы углерода глюкозы и других моносахаридов могут быть использованыдля синтеза большинства заменимых аминокислот.

Промежуточный метаболит расщепления глюкозы — 3 фосфоглицериновая кислота связана с синтезом серина, глицина и цистеина; из пирувата может образоваться аланин; через оксалоацетат идет синтез аспарагина и аспартата; чрез 2-оксоглутарат – пролина, глутамина, глутамата.

Лишь углеродный скелет тирозина не образуется в этой системе. Разумеется, для образования аминокислот необходим источник аминного азота и SH-групп (для синтеза цистеина).

В то же время в условиях дефицита углеводов в пище углеродные скелеты аминокислот могут широко использоваться для глюконеогенеза.

Узловыми соединениями, связывающими метаболические пути обмена углеводов и обмена аминокислот являются 3‑фосфоглицериновая кислота, фосфоенолпируват, пируват и соединения цикла Кребса.

Взаимосвязь обмена углеводов и липидов

Углеводы в ходе их переработки в метаболической сети могут превращаться в жиры.

Узловыми метаболитами, обеспечивающими взаимодействие процессов окислительного расщепления глюкозы и процессов синтеза липидов, являются 3‑фосфоглицериновый альдегид и фосфодигидроксиацетон, 3-фосфоглицериновая кислота, пируват и ацетил-КоА.

Использование липидов для синтеза глюкозы в организме человека крайне ограничено. Лишь остаткиглицероланейтральных жиров и глицерофосфолипидов могут быть использованы в глюконеогенезе.

Взаимосвязь обмена аминокислот и липидов

При использовании аминокислот для синтеза липидов возможны два варианта перехода их углеродного скелета в исходный субстрат для синтеза высших жирных кислот — ацетил-КоА.

Ø При первом варианте при расщеплении аминокислот образуется пируват, который после декарбоксилирования переходит в ацетил‑КоА. Пируват образуется или непосредственно из углеродных скелетов аминокислот, что характерно для треонина, цистеина, серина, аланина, глицина, или же из аминокислот вначале образуются промежуточные продукты цикла Кребса, превращающиеся в оксалоацетат, который после декарбоксилирования дает пируват. Этим путем идет образование пирувата из глутамата, глутамина, аргинина, гистидина и ряда других аминокислот.

Ø При втором варианте ацетил-КоА образуется или непосредственно при окислительном расщеплении углеродного скелета аминокислоты, или через ацетоацетат, который в ходе тиолазной реакции распадается на две молекулы ацетил-КоА. По этому варианту идет расщепление лейцина, лизина и части углеродных скелетов фенилаланина и тирозина.

Поскольку все аминокислоты, при расщеплении которых образуются пируват или промежуточные продукты цикла Кребса могут участвовать в глюконеогенезе, их углеродные скелеты могут быть использованы для образования 3-фосфоглицеринового альдегида или фосфодигидроксиацетона — исходных соединений для синтеза 3-фосфоглицерола и далее триацилглицеринов.

Углеродные скелеты любой из аминокислот в принципе могут быть использованы для синтеза соединений стероидный природы, поскольку синтез стероидов в клетках идет из ацетил-КоА.

Узловыми метаболитами, обеспечивающими взаимосвязь обмена аминокислот с обменом липидов, являются промежуточные соединения цикла Кребса, пируват, ацетил-КоА, 3-фосфоглицериновая кислота, 3-фосфоглицериновый альдегид и фосфодигидроксиацетон.

Для синтеза углеродного скелета заменимых аминокислот может использоваться остаток глицерола триглицеридов или глицерофосфолипидов, однако в количественном отношении этот источник атомов углерода может иметь крайне ограниченное значение лишь в отсутствии углеводов.

Однако такой синтез некоторых заменимых аминокислот с использованием атомов углерода ацетил-КоА связан с расходованием оксалоацетата, а, следовательно, со снижением содержания в клетке промежуточных продуктов цикла Кребса, что для клетки крайне невыгодно.

Межорганные метаболические взаимосвязи

Метаболизм отдельных органов и тканей в рамках целостного организма также представляет собой высокоинтегрированную систему. В качестве примера межорганных метаболических взаимосвязей можно привести следующие:

Ø Синтез креатина начинается в почках, где из глицина и аргинина образуется промежуточный продукт синтеза гликоциамин. Гликоциамин с током крови поступает из почек в печень, где при участии S-аденозилметионина подвергается метилированию, превращаясь в креатин. Далее креатин поступает с током крови в клетки различных органов, например, клетки мозга или мышц, где и выполняет свою функцию, превращаясь в резервный макроэрг — креатинфосфат.

Ø При интенсивной мышечной работе в миоцитах идет распад гликогена и глюкозы с образованием лактата. Лактат из миоцитов выходит в кровь и с током крови поступает в печень.гепатоцитах часть лактата окисляется до конечных продуктов (СО2 и Н2О), остальной лактат используется для глюконеогенеза. Энергия, необходимая для глюконеогенеза, поставляется за счет окисления лактата.

Синтезированная в гепатоцитах глюкоза поступает в кровь, переносится с током крови в мышцы, где расщепляется с выделением энергии, используемой для мышечного сокращения.

Возникает своеобразный цикл взаимопревращения глюкозы и лактата, известный под названием цикла Кори. В ходе функционирования этого цикла, во-первых, происходит утилизация наработанного в мышцах лактата, во-вторых, в энергообеспечении мышечной деятельности принимает участие печень, поскольку энергия, затраченная гепатоцитами на синтез глюкозы из лактата затем выделяется при расщеплении глюкозы в миоциотах.

Ø При работе мышц образуется токсичный для клеток аммиак. Вынос и обезвреживание образовавшегося аммиака осуществляется в ходе так называемого глюкозо-аланинового цикла. В миоцитах образовавшийся аммиак используется для образования аланина из пирувата. Пируват образуется при расщеплении глюкозы и превращается в аланин в ходе трансреаминирования. Аланин поступает в кровь, доставляется в гепатоциты и там подвергается дезаминированию с образованием аммиака и пирувата. Аммиак превращается в мочевину в ходе известного защитного синтеза. Пируват же частично окисляется до конечных продуктов, а частично превращается в гепатоцитах в ходе глюконеогенеза в глюкозу, откуда с током крови глюкоза поступает в миоциты и, окисляясь, служит источником энергии для работы мышц. В ходе этого окисления вновь образуется пируват.

Читайте так же:  Аргинин препараты в аптеке

Подобного рода примеров межорганных метаболических связей можно привести множество. Эта многочисленность межорганных метаболических связей, наряду с интеграцией метаболических путей превращений углеводов, липидов и аминокислот, в полной мере подтверждает то, что обмен веществ в организме представляет собой единую высокоинтегрированную сеть метаболических процессов, протекающих в клетках различных органов и тканей.

Расщепление аминокислот

В первом разделе данной главы уже охарактеризована необходимость и основная стратегия расщепления аминокислот. Она объясняется невозможностью запасания аминокислот впрок и невозможностью их выведения из клеток целиком. Избыточные аминокислоты используются организмами как метаболическое топливо: их углеродные скелеты при перестройках определенного рода могут вовлекаться в биосинтез жирных кислот, глюкозы, кетоновых тел, изопреноидов и др., а также окисляться в ЦТК, обеспечивая клетку энергией. Следует отметить, что многие микроорганизмы, в частности аэробные бактерии, способны использовать отдельные аминокислоты в качестве единственного источника энергии и углерода. У анаэробных микроорганизмов, при отсутствии в клетках цикла трикарбоновых кислот, выработался другой механизм: катаболизм аминокислот в парах, когда одна из них служит донором электронов, а вторая—акцептором. Важно, что в таком процессе происходит образование АТР.

Кроме углеродных скелетов, при деградации аминокислот образуется аминный азот, который в отличие от углерода не пригоден для получения энергии за счет окисления, и более того, является токсичным для клеток. Поэтому те аминогруппы, которые не могут повторно использоваться в биосинтезе, превращаются в мочевину (или другие вещества) и выводятся из организма.

Ниже будут рассмотрены основные типы реакций, в которые могут вступать аминокислоты: реакции по a-аминогруппе, карбоксильной группе и боковой цепи.

Расщепление аминокислот по аминогруппе. Эти процессы представлены в основном реакциями трансаминирования и дезаминирования по a-аминогруппе. Реакции трансаминирования уже были рассмотрены в разделе, касающемся биосинтеза аминокислот. Они катализируются трансаминазами (аминотрансферазами), отличительной особенностью которых является использование пиридоксальфосфата (производное витамина В6) в качестве простетической группы. Наибольшее значение в процессах деградации аминокислот имеют глутамат-трансаминаза и аланин-трансаминаза. Эти ферменты выполняют роль «воронок», собирающих аминогруппы от разных аминокислот и включающих их в состав глутамата и аланина. У животных эти две аминокислоты служат переносчиками накапливающегося аминного азота из тканей в печень. В печени аминогруппа аланина переносится аланинтрансаминазой на a-кетоглутарат с образованием глутамата:

Таким образом, большинство аминогрупп различных аминокислот оказывается в составе глутамата, который легко подвергается дезаминированию.

Реакции дезаминирования аминокислот приводят к освобождению NH2-группы в виде аммиака и осуществляются тремя разными путями. Различают окислительное, гидролитическое и прямое дезаминирование (рис. 16.12). Наиболее распространенным типом является окислительное дезаминирование, которое осуществляется по a-аминогруппе и катализируется в основном глутаматдегидрогеназой — типичным для печени ферментом. Необычным свойством этого фермента является способность использовать как NAD, так и NADP в качестве коферментов. Активность глутаматдегидрогеназы регулируется аллостерическими активаторами (ADP, GDP) и ингибиторами (ATP, GTP).

Окислительное дезаминирование осуществляется в две стадии с образованием иминокислоты в качестве промежуточного продукта, который спонтанно гидролизуется, превращаясь в кетокислоту и аммиак (рис. 16.12). Обе реакции обратимы, и их константы равновесия близки к единице. Ранее (рис. 16.3) было показано, как в ходе обратной реакции аммиак включается в состав глутамата. Можно считать, что реакция образования и дезаминирования глутамата является центральной реакцией в процессе метаболизма аммиака.

У многих организмов окислительное дезаминирование осуществляется с помощью дегидрогеназ, использующих флавиновые кофакторы (FMN, FAD). Эти ферменты называют оксидазами аминокислот. Они характеризуются широкой субстратной специфичностью: одни специфичны к L-аминокислотам, другие — к их D-аналогам. Считается, что эти ферменты вносят небольшой вклад в обмен аминогрупп.

Гидролитическому дезаминированию подвержены немногие аминокислоты, из протеиногенных — аспарагин и глутамин. При их дезаминировании образуются соответственно аспартат и глутамат. Этот процесс правильнее называть дезамидированием, поскольку он осуществляется за счет амидной группы (рис. 16.12). В редких случаях таким путем отщепляется и aаминогруппа аминокислоты, тогда образуются аммиак и оксикислота.

В результате прямого (внутримолекулярного) дезаминирования возникают ненасыщенные соединения. Прямому дезаминированию обычно подвергается гистидин, а также серин. Однако первичная ферментативная атака серина приводит к отщеплению молекулы воды (фермент—серингидратаза), и в этом превращении участвует боковая гидроксильная группа серина. Спонтанному дезаминированию в данном случае подвергается нестабильное промежуточное соединение — аминоакрилат. Продуктом суммарной реакции является пируват, и этот тип дезаминирования вызывается перестройкой в боковой цепи аминокислоты.

Реакции аминокислот по карбоксильной группе. Превращения по карбоксильной группе аминокислот могут использоваться организмами для деградации этих молекул, а также для превращения в другие, необходимые клетке соединения, в первую очередь аминоациладенилаты и биогенные амины. Образование аминоациладенилатов на подготовительной стадии синтеза белка уже было описано в главе 3. Биогенные амины возникают в реакциях, катализируемых декарбоксилазами аминокислот. Эти ферменты широко распространены у животных, растений и особенно у микроорганизмов, причем известно, что у патогенных микроорганизмов декарбоксилазы могут служить факторами агрессии, с помощью которых возбудитель проникает в соответствующие ткани. Декарбоксилазы L-аминокислот, так же как трансаминазы, используют в качестве простетической группы пиридоксальфосфат.

Моноамины (биогенные амины) выполняют в организмах разнообразные функции. Например, этаноламин, образующийся при декарбоксилировании серина, является составной частью полярных липидов. При декарбоксилировании цистеина и аспартата образуются соответственно цистеамин и b-аланин, которые входят в состав такого важного для клеток кофермента, как коэнзим А. Декарбоксилирование гистидина приводит к образованию гистамина — медиатора, участвующего в регуляции скорости метаболических процессов, деятельности желез внутренней секреции, регуляции кровяного давления у животных. Многие другие биогенные амины выполняют функции сигнальных веществ, в частности широко распространенных у животных и человека нейромедиаторов.

[1]

Реакции аминокислот по боковой цепи. Насколько разнообразна структура радикалов аминокислот, настолько разнообразны и химические превращения, которым они могут подвергаться. Среди этих многообразных реакций можно выделить те, которые позволяют клетке получать из одних аминокислот другие. Например, тирозин образуется при окислении ароматического кольца фенилаланина; гидролиз аргинина приводит к формированию орнитина (см. цикл мочевины); расщепление треонина сопровождается образованием глицина и т. п.

Читайте так же:  Креатин в продуктах таблица

Кроме этих реакций, важное значение имеют превращения боковых групп, связанные с возникновением физиологически активных веществ. Так, из тирозина образуется гормон адреналин, из триптофана образуются никотиновая кислота (витамин РР, входящий в состав никотинамидных коферментов) и индолилуксусная кислота (ростовое вещество), из цистеина—меркаптуровые кислоты (участвуют в обезвреживании ароматических соединений). Уже отмечалась возможность превращения серина в пируват при дегидратации его боковой цепи и дезаминировании.

Таким образом, разнообразные химические превращения аминокислот могут приводить к образованию биологически активных веществ с широким спектром действия и, кроме того, к отщеплению аминогрупп в виде аммиака с формированием углеродных скелетов. В следующем разделе будет рассмотрена судьба аммиака и углеродных атомов расщепленных аминокислот.

Не нашли то, что искали? Воспользуйтесь поиском:

Метаболизм аминокислот и белков

Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутамино-вой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глу-тамином и трипептидом глутатионом приходится более 50% α-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это γ-аминомасляная кислота, N-ацетиласпарагиновая кислота и цистатионин (см. главу 1).

Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник «сырья» для синтеза белков и биологически активных аминов. Одна из функций дикарбоновых аминокислот в головном мозге – связывание аммиака, освобождающегося при возбуждении нервных клеток.

Поступления аминокислот в мозговую ткань и выход из нее, а также использование глюкозы крови для синтеза аминокислот нейронов и глии в разных отделах мозга различны. Эти различия в существенной мере обусловлены наличием гематоэнцефалического барьера, который следует рассматривать конкретно для каждого вещества или класса веществ. Ге-матоэнцефалический барьер не следует представлять как единое структурное образование, создающее преграду для транспорта; различие относительно скоростей поступления веществ в разные отделы мозга может быть обусловлено особенностями эпителия сосудов, базальной мембраны или расположения прилегающих отростков глиальных клеток. В условиях in vitro (в отсутствие барьера) многие аминокислоты накапливаются в клетках мозга за счет активного транспорта, в котором участвует несколько самостоятельных Na + -зависимых транспортных систем.

Установлено, что белки в головном мозге находятся в состоянии активного обновления, о чем свидетельствует быстрое включение радиоактивных аминокислот в молекулы белков. Однако в разных отделах головного мозга скорость синтеза и распада белковых молекул неодинакова. Белки серого вещества полушарий большого мозга и белки мозжечка отличаются особенно большой скоростью обновления. В участках головного мозга, богатых проводниковыми структурами – аксонами (белое вещество головного мозга), скорость синтеза и распада белковых молекул меньше.

При различных функциональных состояниях ЦНС наступают изменения в интенсивности обновления белков. Так, при действии на организм животных возбуждающих агентов (фармакологические средства и электрический ток) в головном мозге усиливается интенсивность обмена белков. Под влиянием наркоза скорость распада и синтеза белков снижается.

Возбуждение нервной системы сопровождается повышением содержания аммиака в нервной ткани. Это явление наблюдается как при раздражении периферических нервов, так и при раздражении мозга. Считают, что образование аммиака при возбуждении в первую очередь происходит за счет дезаминирования АМФ.

Аммиак – очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина – безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани – путь восстановительного аминирования α-кетоглутаровой кислоты;

Образование глутаминовой кислоты из α-кетоглутаровой и аммиака является важным механизмом нейтрализации аммиака в ткани мозга, где путь устранения аммиака за счет синтеза мочевины не играет существенной роли.

Кроме того, глутаминовая кислота в нервной ткани может декарбокси-лироваться с образованием ГАМК:

Видео удалено.
Видео (кликните для воспроизведения).

ГAMК в наибольшем количестве содержится в сером веществе головного мозга. В спинном мозге и периферических нервах ее значительно меньше.

Аминокислоты как источник энергии

Первостепенная роль углеводов как источников энергии в клетке была отмечена. Однако субстратами катаболических процессов могут служить также белки и жиры. При этом энергетическая роль белков вторична. Они бывают востребованы в качестве субстратов, если израсходованы все запасы жиров и углеводов. Жиры – «резервное топливо», поэтому клетка охотно использует их, если исчерпан запас углеводов.

Белки распадаются на аминокислоты, которые сами по себе не являются макроэргическими соединениями, но расщепление некоторых из них сопровождается синтезом АТФ или образованием пировиноградной кислоты.

Читайте так же:  Самый лучший л карнитин для мужчин

Под действием эндоферментов – дезаминаз и декарбоксилаз – в клетках микроорганизмов происходит расщепление аминокислот, при этом может отщепляться или аминная (-NH2), или карбоксильная (-СООН) группы. Характер превращения аминокислот зависит, главным образом, от реакции среды в период роста бактерий. В кислой среде происходит декарбоксилирование, в щелочной – дезаминирование, при этом среда нейтрализуется. Обе системы ферментов действуют как механизмы нейтрализации среды, в результате рН сохраняется в физиологических пределах.

При декарбоксилировании образуются амины соответствующих кислот по уравнению:

В настоящее время обнаружены декарбоксилазы для всех 20 аминокислот. Они характеризуются специфичностью катализируемых реакций.

Дезаминирование аминокислот сопровождается выделением NH3 и осуществляется многочисленными и разнообразными реакциями. Разнообразие реакций определяется набором ферментов, присущих тому или иному микроорганизму.

У аэробов распространено окислительное дезаминирование, приводящее к образованию α-кетокислоты:

Некоторые микроорганизмы производят дезаминирование аминокислот с образованием пировиноградной кислоты, которая включается в энергетический обмен.

Однако было установлено, что значительная часть энергии микроорганизмам может поставляться из смеси аминокислот, за счет сопряженных окислительно-восстановительных реакций между аминокислотами (реакция Стикленда). При этом одни аминокислоты играют роль доноров, а другие – акцепторов водорода.

Образовавшаяся кетокислота декарбоксилируется, а если это происходит в присутствии фосфата, то образуется макроэргическое фосфорное производное:

Для аминокислот характерен процесс переаминирования (трансаминирования), когда аминогруппа α-аминокислоты перемещается в α-положение кетокислоты, в процессе которого ферменты трансаминазы переносят аминогруппу с аминокислоты на кетокислоту:

В реакции переаминирования аланина и кетоглутаровой кислоты образуются глутаминовая и пировиноградная кислоты.

Переаминирование широко распространено у бактерий и является важным процессом биологического распада и синтеза аминокислот.

Глава 15. ВЗАИМОСВЯЗЬ ПРОЦЕССОВ ОБМЕНА ВЕЩЕСТВ В ОРГАНИЗМЕ

Живой организм и его функционирование находятся в постоянной зависимости от окружающей среды. Интенсивность обмена с внешней средой и скорость внутриклеточных процессов обмена веществ поддерживают постоянство внутренней среды и целостность организма.

Как было указано, обмен веществ в организме человека протекает не хаотично; он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

[2]

Еще Кребс и Корнберг отмечали, что, несмотря на огромное разнообразие пищевых веществ (белки, жиры, углеводы), число химических реакций, обеспечивающих их превращения (распад) и образование энергии, «удивительно мало». Эти закономерности свойственны как организму животных и человека, так и микроорганизмам и растениям.

В настоящее время экспериментально обосновано существование четырех главных этапов распада молекул углеводов, белков и жиров, которые интегрируют образование энергии из основных пищевых источников. На I этапе полисахариды расщепляются до моносахаридов (обычно гексоз); жиры распадаются на глицерин и высшие жирные кислоты, а белки – на составляющие их свободные аминокислоты. Следует подчеркнуть, что указанные процессы в основном являются гидролитическими, поэтому освобождающаяся в небольшом количестве энергия почти целиком используется организмами в качестве тепла.

На II этапе мономерные молекулы (гексозы, глицерин, жирные кислоты и аминокислоты) подвергаются дальнейшему распаду, в процессе которого образуются богатые энергией фосфатные соединения и ацетил-КоА. В частности, при гликолизе гексозы расщепляются до пировиноград-ной кислоты и далее до ацетил-КоА. Этот процесс сопровождается образованием ограниченного числа богатых энергией фосфатных связей путем субстратного фосфорилирования. На этом этапе высшие жирные кислоты аналогично распадаются до ацетил-КоА, в то время как глицерин окисляется по гликолитическому пути до пировиноградной кислоты и далее до ацетил-КоА. Для аминокислот ситуация на II этапе несколько отлична. При преимущественном использовании аминокислот в качестве источника энергии (при дефиците углеводов или при сахарном диабете) некоторые из них непосредственно превращаются в метаболиты лимоннокислого цикла (глутамат, аспартат), другие – опосредованно через глутамат (пролин, гистидин, аргинин), третьи – в пируват и далее в ацетил-КоА (аланин, серин, глицин, цистеин). Наконец, ряд аминокислот, в частности лейцин, изо-лейцин, расщепляется до ацетил-КоА, а из фенилаланина и тирозина, помимо ацетил-КоА, образуется оксалоацетат через фумаровую кислоту. Как видно, II этап можно назвать этапом образования ацетил-КоА, являющегося по существу единым (общим) промежуточным продуктом катаболизма основных пищевых веществ в клетках.

На III этапе ацетил-КоА (и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат) подвергаются окислению («сгоранию») в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н + и ФАДН2.

На IV этапе осуществляется перенос электронов от восстановленных нуклеотидов на кислород (через дыхательную цепь). Он сопровождается образованием конечного продукта – молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфо-рилирования (см. главу 9).

Необходимо отметить, что, помимо взаимных переходов между разными классами веществ в организме, доказано существование более сложных форм связи. В частности, интенсивность и направление любой химической реакции определяются ферментами, т.е. белками, которые оказывают непосредственное влияние на обмен липидов, углеводов и нуклеиновых кислот. В свою очередь синтез любого белка-фермента требует участия ДНК и всех 3 типов рибонуклеиновых кислот: тРНК, мРНК и рРНК. Если к этому добавить влияние гормонов, а также продуктов распада какого-либо одного класса веществ (например, биогенных аминов) на обмен других классов органических веществ, то становятся понятными удивительная согласованность и координированность огромного разнообразия химических процессов, совершающихся в организме. Многие из этих процессов были подробно освещены при описании обмена отдельных классов веществ (см. главы 10-12). В данной главе кратко представлены примеры взаимных переходов отдельных структурных элементов белков, жиров, углеводов (рис. 15.1) и нуклеиновых кислот в процессе их превращений и обмена.

Читайте так же:  Белки жиры углеводы аминокислоты

Помимо прямых переходов метаболитов этих классов веществ друг в друга, существует тесная энергетическая связь, когда энергетические потребности могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других. Важность белков (в частности, ферментов, гормонов и др.) в обмене всех типов химических соединений слишком очевидна и не требует доказательств. Ранее было отмечено большое значение белков и аминокислот для синтеза ряда специализированных соединений (пуриновые и пиримиди-новые нуклеотиды, порфирины, биогенные амины и др.). Кетогенные аминокислоты, образующие в процессе обмена ацетоуксусную кислоту (ацетоацетил-КоА), могут непосредственно участвовать в синтезе жирных кислот и стеринов. Аналогично могут использоваться гликогенные аминокислоты через ацетил-КоА, но после предварительного превращения в пируват. Некоторые структурные компоненты специализированных липидов, в частности фосфоглицеринов, имеют своим источником аминокислоты и их производные, например серин, этаноламин, сфингозин и холин. Необходимо подчеркнуть, что превращение углеродных скелетов кетогенных или гликогенных аминокислот в жирные кислоты является необратимым процессом, хотя нельзя исключить возможности частичного синтеза глутамата и опосредованно других аминокислот из продуктов распада жирных кислот – ацетил-КоА – через цикл трикарбоновых кислот, включающий α-кетоглутарат. В то же время из глицерина нейтральных жиров через пируват полностью осуществляется синтез углеродных скелетов некоторых гликогенных аминокислот.

Рис. 15.1. Взаимосвязь белков, жиров и углеводов.

Продукты гидролиза пищевых и тканевых триацилглицеролов, в частности высшие жирные кислоты, участвуют непосредственно в образовании сложных белков – липопротеинов плазмы крови. В составе липопротеинов, являющихся, таким образом, транспортной формой жирных кислот, они доставляются в органы-мишени, в которых жирные кислоты служат или источником энергии (сердечная и поперечно-полосатая мускулатура), или предшественниками синтеза тканевых триацилглицеролов с последующим их отложением в клетках ряда органов (депо липидов).

[3]

Получены доказательства синтеза глюкозы из большинства аминокислот. Для некоторых аминокислот (аланин, аспарагиновая и глутами-новая кислоты) связь с глюконеогенезом является непосредственной, для других она осуществляется через побочные метаболические пути. Следует особо подчеркнуть, что три α-кетокислоты (пируват, оксалоацетат и кето-глутарат), образующиеся соответственно из аланина, аспартата и глу-тамата, не только служат исходным материалом для синтеза глюкозы, но являются своеобразными кофакторами при распаде ацетильных остатков всех классов пищевых веществ в цикле Кребса для получения энергии.

Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом: более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса – глюкозоаланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезами-нированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи.

Энергетическая ценность пищи оказывает определенное влияние на белковый обмен, контролируемый азотистым балансом. Так, если потребляемая энергия пищи ниже минимального уровня, то наблюдается увеличение экскреции азота, и, наоборот, при увеличении энергетической ценности пищи экскреция азота с мочой снижается.

Между циклом лимонной кислоты и орнитиновым циклом мочевино-образования имеются сложные связи, определяющие в известной степени скорость реакций, зависимую от энергетических потребностей клетки и концентраций конечных продуктов метаболизма. Как было показано (см. главу 12), фумаровая кислота образуется в процессе распада аргинино-янтарной кислоты, синтез которой в свою очередь требует наличия аминокислоты аспартата. Образовавшаяся фумаровая кислота (из предшественника аминокислоты аспартата) далее вступает в цикл лимонной кислоты и под действием двух ферментов этого цикла: фумаратгидратазы и малат-дегидрогеназы – превращается в оксалоацетат, который при участии специфической трансаминазы вновь превращается в аспартат, т.е. получается своеобразный аспартат-аргининоянтарный шунт цикла лимонной кислоты, соединенного с циклом мочевинообразования (рис. 15.2). Таким образом, при помощи этого необычного сцепленного механизма происходит переплетение реакций обоих циклов (мочевинообразования и ди- и трикар-боновых кислот). Этот механизм получил название «велосипед Кребса» (The «Krebs bicycle»).

Из приведенной общей схемы (см. рис. 15.1) видно также, что имеются различные пути взаимопревращений жиров и углеводов. Практика откорма сельскохозяйственных животных давно подтвердила возможность синтеза жиров из углеводов пищи. С энергетической точки зрения, превращение углеводов в жиры следует рассматривать как накопление и депонирование энергии, хотя синтез жира сопровождается затратой энергии, которая вновь освобождается при окислении жиров в организме. Глицерин, входящий

Читайте так же:  Витамины группы б названия препаратов

Рис. 15.2. The «Krebs Bicycle». (Печатается с любезного разрешения д-ра David L. Nelson и д-ра М.М. Сох, 1993.)

Перечисленными примерами абсолютно не исчерпывается все многообразие взаимопревращений органических веществ, которые постоянно совершаются в живых организмах. Здесь приведены лишь главные, магистральные каналы и пути превращения общих классов веществ и указаны ключевые субстраты и ферментные системы, обеспечивающие постоянство химических компонентов и тканей и динамичность живых структур.

Таким образом, скорость распада одних питательных веществ и биосинтеза других прежде всего определяется физиологическим состоянием и потребностями организма в энергии и метаболитах. Благодаря динамичности и координации метаболической активности обеспечивается макро- и микроскопическое постоянство всех форм живого. Выяснение фундаментальных проблем структуры и функций отдельных биомолекул может служить основой для раскрытия как молекулярных механизмов химических процессов, лежащих в основе состава и функций отдельных клеток и целостного организма, так и процессов, обеспечивающих биологическую индивидуальность живых организмов. Любые нарушения этого динамического статуса организма сопровождаются развитием патологии, тяжесть и продолжительность которой будут определяться степенью повреждения структуры и функций отдельных молекулярных и надмолекулярных компонентов клеток.

Откуда в клетке АТФ?

Способы получения энергии в клетке

В клетке существуют четыре основных процесса, обеспечивающих высвобождение энергии из химических связей при окислении веществ и ее запасание:

1. Гликолиз (2 этап биологического окисления) – окисление молекулы глюкозы до двух молекул пировиноградной кислоты, при этом образуется 2 молекулы АТФ и НАДН. Далее пировиноградная кислота в аэробных условиях превращается в ацетил-SКоА, в анаэробных условиях – в молочную кислоту.

2. β-Окисление жирных кислот (2 этап биологического окисления) – окисление жирных кислот до ацетил-SКоА, здесь образуются молекулы НАДН и ФАДН2. Молекулы АТФ «в чистом виде» не появляются.

3. Цикл трикарбоновых кислот (ЦТК, 3 этап биологического окисления) – окисление ацетильной группы (в составе ацетил-SКоА) или иных кетокислот до углекислого газа. Реакции полного цикла сопровождаются образованием 1 молекулы ГТФ (что эквивалентно одной АТФ), 3 молекул НАДН и 1 молекулы ФАДН2.

4. Окислительное фосфорилирование (3 этап биологического окисления) – окисляются НАДН и ФАДН2, полученные в реакциях катаболизма глюкозы, аминокислот и жирных кислот. При этом ферменты дыхательной цепи на внутренней мембране митохондрий обеспечивают образование большей части клеточного АТФ.

Два способа синтеза АТФ

В клетке постоянно происходит использование всех нуклеозидтрифосфатов (АТФ, ГТФ, ЦТФ, УТФ, ТТФ) как донора энергии. При этом АТФ является универсальным макроэргом, участвующим практически во всех сторонах метаболизма и деятельности клетки. И именно за счет АТФ обеспечивается фосфорилирование нуклеотидов ГДФ, ЦДФ, УДФ, ТДФ до нуклеозидтрифосфатов.

У других нуклеозидтрифосфатов существует некая специализация. Так, УТФ участвует в обмене углеводов, в частности в синтезе гликогена. ГТФ задействован в рибосомах, участвует в образовании пептидной связи в белках. ЦТФ используется в синтезе фосфолипидов.

Основным способом получения АТФ в клетке является окислительное фосфорилирование, протекающее в структурах внутренней мембраны митохондрий. При этом энергия атомов водорода молекул НАДН и ФАДН2, образованных в гликолизе, ЦТК, окислении жирных кислот, преобразуется в энергию связей АТФ.

Однако также есть другой способ фосфорилирования АДФ до АТФ – субстратное фосфорилирование. Этот способ связан с передачей макроэргического фосфата или энергии макроэргической связи какого-либо вещества (субстрата) на АДФ. К таким веществам относятся метаболиты гликолиза (1,3-дифосфоглицериновая кислота, фосфоенолпируват), цикла трикарбоновых кислот (сукцинил-SКоА) и резервный макроэрг креатинфосфат. Энергия гидролиза их макроэргической связи выше, чем 7,3 ккал/моль в АТФ, и роль указанных веществ сводится к использованию этой энергии для фосфорилирования молекулы АДФ до АТФ.

Классификация макроэргов

Макроэргические соединения классифицируются по типу связи, несущей дополнительную энергию:

1. Фосфоангидридная связь. Такую связь имеют все нуклеотиды: нуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ, ТТФ) и нуклеозиддифосфаты (АДФ, ГДФ, ЦДФ, УДФ, ТДФ).

2. Тиоэфирная связь. Примером являются ацил-производные коэнзима А: ацетил-SКоА, сукцинил-SКоА, и другие соединения любой жирной кислоты и HS-КоА.

3. Гуанидинфосфатная связь – присутствует в креатинфосфате, запасном макроэрге мышечной и нервной ткани.

4. Ацилфосфатная связь. К таким макроэргам относится метаболит гликолиза 1,3-дифосфоглицериновая кислота (1,3-дифосфоглицерат). Она обеспечивает синтез АТФ в реакции субстратного фосфорилирования.

Видео удалено.
Видео (кликните для воспроизведения).

5. Енолфосфатная связь. Представитель – фосфоенолпируват, метаболит гликолиза. Он также обеспечивает синтез АТФ в реакции субстратного фосфорилирования в гликолизе.

Источники


  1. Догель, А.С. Гигиена / А.С. Догель. — М.: Брокгауз-Эфрон, 1992. — 240 c.

  2. Вовк, С.И. Диалектика спортивной тренировки / С.И. Вовк. — М.: Физическая культура, 2007. — 297 c.

  3. Котешева, И. А. Гимнастика для женщин / И.А. Котешева. — М.: Владос-Пресс, 2008. — 176 c.
  4. Спортивная акробатика; Физкультура и спорт — Москва, 2013. — 238 c.
Образование энергии из аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here