Одну аминокислоту молекулы белка кодирует

Сегодня предлагаем ознакомится со статьей на тему: одну аминокислоту молекулы белка кодирует с профессиональным описанием и объяснением.

Одну аминокислоту молекулы белка кодирует

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК. Свойства генкода:

  • Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон.
  • Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.
  • Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.
  • Универсальность: генетический код одинаков для всех живых организмов на Земле.

Этапы синтеза белка

Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

1. Сколько аминокислот кодирует 900 нуклеотидов
А) 100
Б) 200
В) 300
Г) 400

2. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
А) АЦУ
Б) ЦУГ
В) УГА
Г) АГА

3. Сборка белковых молекул в клетке происходит на
А) мембранах эндоплазматической сети
Б) мембранах аппарат Гольджи
В) митохондриях
Г) рибосомах

4. С помощью молекул иРНК осуществляется передача наследственной информации
А) из ядра к митохондрии
Б) из одной клетки в другую
В) из ядра к рибосоме
Г) от родителей потомству

5. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
А) ТТА
Б) ААТ
В) ААА
Г) ТТТ

6. иРНК является копией
А) одного гена или группы генов
Б) цепи молекулы белка
В) одной молекулы белка
Г) части плазматической мембраны

7. Сколько нуклеотидов в гене кодируют последовательность 60 аминокислот в молекуле белка
А) 60
Б) 120
В) 180
Г) 240

8. Белок состоит из 100 аминокислот. Определите число нуклеотидов в молекуле ДНК, кодирующей данный белок
А) 200
Б) 300
В) 400
Г) 600

9. Какое число нуклеотидов в гене кодирует первичную структуру белка, состоящего из 300 аминокислот
А) 150
Б) 300
В) 600
Г) 900

10. Генетический код определяет принцип записи информации о
А) последовательности аминокислот в молекуле белка
Б) транспорте иРНК в клетке
В) расположении глюкозы в молекуле крахмала
Г) числе рибосом на эндоплазматической сети

11. Рибонуклеиновая кислота в клетках участвует в
А) хранении наследственной информации
Б) биосинтезе белков
В) биосинтезе углеводов
Г) регуляции обмена жиров

12. Каждая аминокислота в клетке кодируется
А) одной молекулой ДНК
Б) несколькими триплетами
В) несколькими генами
Г) одним нуклеотидом

13. Определенной последовательностью трех нуклеотидов зашифрована в клетке каждая молекула
А) аминокислоты
Б) глюкозы
В) крахмала
Г) глицерина

14. Функциональная единица генетического кода
А) нуклеотид
Б) триплет
В) аминокислота
Г) тРНК

15. Синтез белка происходит в
А) аппарате Гольджи
Б) рибосомах
В) гладкой эндоплазматической сети
Г) лизосомах

16. Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК
А) ЦГТ
Б) АГЦ
В) ГЦТ
Г) ЦГА

17. Генетический код является универсальным, так как
А) каждая аминокислота кодируется тройкой нуклеотидов
Б) место аминокислоты в молекуле белка определяют разные триплеты
В) он един для всех живущих на Земле существ
Г) несколько триплетов кодируют одну аминокислоту

18. Число нуклеотидов, кодирующих в клетке каждую аминокислоту,
А) один
Б) два
В) три
Г) четыре

19. Какой триплет в молекуле информационной РНК соответствует кодовому триплету ААТ в молекуле ДНК
А) УУА
Б) ТТА
В) ГГЦ
Г) ЦЦА

20. Принцип записи информации о расположении аминокислот в молекуле белка в виде последовательности триплетов ДНК
А) ген
Б) кодон
В) антикодон
Г) генетический код

21. Триплетность, специфичность, универсальность, неперекрываемость — это свойства
А) генотипа
Б) генома
В) генетического кода
Г) генофонда популяции

22. Белок состоит из 240 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована первичная структура этого белка?
А) 120
Б) 360
В) 480
Г) 720

23. Информация о последовательности расположения аминокислот в молекуле белка переписывается в ядре с молекулы ДНК на молекулу
А) АТФ
Б) рРНК
В) тРНК
Г) иРНК

24. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
А) хромосомой
Б) триплетом
В) геном
Г) кодом

25. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке
А) 90
Б) 180
В) 360
Г) 540

26. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
А) трансляции
Б) транскрипции
В) редупликации
Г) денатурации

27. Какая последовательность правильно отражает путь реализации генетической информации
А) ген —> иРНК —> белок —> признак
Б) признак —> белок —> иРНК —> ген —> ДНК
В) иРНК —> ген —> белок —> признак
Г) ген —> ДНК —> признак —> белок

28. Три рядом расположенных нуклеотида в молекуле ДНК называют
А) триплетом
Б) генетическим кодом
В) геном
Г) генотипом

29. Выберите правильную последовательность передачи информации в процессе синтеза белка в клетке
А) ДНК —> информационная РНК —> белок
Б) ДНК —> транспортная РНК —> белок
В) рибосомальная РНК —> транспортная РНК —> белок
Г) рибосомальная РНК —> ДНК —> транспортная РНК —> белок

30. Однозначность генетического кода проявляется в кодировании триплетом одной молекулы
А) аминокислоты
Б) полипептида
В) АТФ
Г) нуклеотида

31. Единство генетического кода всех живых существ на Земле проявляется в его
А) триплетности
Б) однозначности
В) специфичности
Г) универсальности

32. Какой триплет на ДНК соответствует кодону УГЦ на и-РНК?
А) ТГЦ
Б) АГЦ
В) ТЦГ
Г) АЦГ

Читайте так же:  Нужно ли принимать креатин в дни отдыха

33. Трансляция — это процесс, при котором
А) удваивается количество нитей ДНК
Б) на матрице ДНК синтезируется иРНК
В) на матрице иРНК в рибосоме синтезируются белки
Г) разрываются водородные связи между молекулами ДНК

34. Молекулы какого вещества являются посредниками в передаче информации о первичной структуре белка из ядра к рибосоме?
А) иРНК
Б) АТФ
В) тРНК
Г) ДНК

35. Одной и той же аминокислоте соответствует антикодон УЦА на транспортной РНК и триплет в гене на ДНК
А) ГТА
Б) АЦА
В) ТГТ
Г) ТЦА

36. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
А) кодоном
Б) триплетом
В) генетическим кодом
Г) геном

37. Последовательность триплетов в иРНК определяет
А) образование вторичной структуры молекулы белка
Б) порядок соединения аминокислот в белке
В) синтез тРНК на ДНК
Г) скорость синтеза полипептидной цепи

Одну аминокислоту молекулы белка кодирует

1. В одной исследовательской лаборатории изучен участок одной из цепочек молекулы дезоксирибонуклеиновой кислоты (ДНК). Оказалось, что он состоит из 24 мономеров-нуклеотидов: ГТГ ТАА ЦГА ЦЦГ АТА ЦТГ ТАЦ АЦЦ . . Каково строение соответствующего участка второй цепочки той же молекулы ДНК?

2. Молекула ДНК распалась на две цепочки. Одна из них имеет строение: ТАГ АЦТ ГГТ АЦА ЦГТ ГГТ ГАТ ТЦА . . Какое строение будет иметь вторая молекула ДНК, когда указанная цепочка достроится до полной двухцепочечной молекулы?

3. Полипептидная цепь одного белка животных имеет следующее начало: лизин — глутамин — треонин — аланин — аланин — аланин — лизин. С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

4. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу — Гли — Асп — Про — Тир — Вал — Про — Вал — Про — Вал — Гис — Фен—Асн — Ала — Сер — Вал. Определите структуру участка ДНК, кодирующего эту часть рибонуклеазы.

5. Какой последовательностью нуклеотидов ДНК кодируется участок белка, если он имеет следующее строение: пролин — валин — аргинин — пролин — лейцин — валин — аргинин?

6. Меньшая цепь мономеров в молекуле инсулина (так называемая цепь А) заканчивается такими аминокислотами: лейцин — тирозин — аспарагин — тирозин — цистеин — аспарагин. Какой последовательностью нуклеотидов ДНК кодируется данная цепь молекулы?

7. Какая последовательность аминокислот кодируется такой последовательностью нуклеотидов ДНК: ЦЦТ АГТ ГТГ ААЦ ЦАТ ТЦА?

8. С. какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов: АЦГ ЦЦЦ АТГ ЩЦ ГГТ АЦЦ? Каким станет начало полипептидной цепи синтезируемого белка, если под влиянием рентгеновских лучей пятый нуклеотид окажется выбитым из молекулы ДНК?

9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА ТЩ ГТТ ТАТ ГЦГ ЦЦЦ. Как изменится белок, если химическим путем будут удалены девятый и тринадцатый нуклеотиды?

10. Назовите последовательные мономеры участка молекулы белка, который синтезируется на основе информации, «записанной» в молекуле ДНК таким порядком нуклеотидов: ТЦТ ЦЦЦ AAA ААГ АТА ИГ ЦАТ. Как отразится на строении белка выпадение из молекулы ДНК первого нуклеотида?

11. В иРНК последний кодон AAA изменен в УАА. Какой нуклеотид заменен в антисмысловой цепи ДНК? К чему это может привести?

12. У человека, больного цистинурией с мочой выделяются аминокислоты, которым соответствуют кодоны иРНК: ЦУУ, ГУУ, ЦУГ, ГУГ, УЦГ, ГУЦ, АУА. У здорового человека в моче обнаруживаются аланин, серин, глутаминовая кислота, глицин. Выделение каких аминокислот характерно для больных цистинурией?

13. Известно, что четвертый пептид гемоглобина А содержит 8 аминокислот в следующей последовательности: Вал — Гис — Лей — Тре — Про — Глу — Глу — Лиз. В гемоглобине S шестая аминокислота (глутаминовая) замещена валином, в гемоглобине С — лизином, а в гемоглобине G седьмая аминокислота (глутаминовая) замещена глицином. Как отразилась мутация в участке ДНК, контролирующем последовательность аминокислот в четвертом пептиде гемоглобинов, на процентный состав азотистых оснований?

14. Молекула гемоглобина А состоит из двух ά- и двух β-цепей полипептидов, соединенных с группой гема (железосодержащая часть гемоглобина). Каждая из цепей содержит около 140 аминокислот. Сколько примерно пар нуклеотидов содержит каждый из участков молекулы ДНК, контролирующий синтез этих цепей полипептидов?

15. Какую длину имеет участок ДНК, кодирующий синтез инсулина, который содержит 51 аминокислоту в двух цепях, если один нуклеотид занимает 3,4 А (ангстрема) цепи ДНК? 1 А = 0,1 нм (нанометра) = 0,0001 мкм (микрометра) = 0,0000001 мм = 0,00000000001 м.

16. Начальный участок цепи В инсулина представлен следующими аминокислотами: Фен — Вал — Асп — Глн — Гис — Лей — Цис — Лей — Цис — Гли — Сер — Лиз.

Определите количественные соотношения в цепи ДНК, кодирующей этот участок ДНК.

17. Содержание нуклеотидов в цепи иРНК следующее: аденилового — 27%, гуанилового — 35%, цитидилового — 18%, урацилового — 20%. Определите процентный состав нуклеотидов участка молекулы ДНК (гена), являющегося матрицей для этой иРНК.

18. Какую длину имеет участок молекулы ДНК, кодирующий миоглобин современных животных, если миоглобин (белок мышц) содержит одну цепь со 155 аминокислотами? Расстояние между двумя соседними нуклеотидами равно 3,4 А.

1. ЦАЦ АТТ ГЦТ ГГЦ ТАТ ГАЦ АТГ ТГГ.

2. АТЦ ТГА ЦЦА ТГТ ТЦЦ ЦЦА АГТ.

3. Возможный вариант:ААГ ГАА АЦУ ГЦУ ГЦУ ГЦУ ААГ — иРНКТТЦ ЦТТ ТГА ЦГА ЦГА ЦГА ТТЦ — ДНК.

4. ЦТТ ЦЦТ ЦТА ГГГ АТА ЦАА ГГА ЦАГ ГГТ ЦАТ ГТА AAA ТТА ЦЩ АГТ ЦАЦ.

5. Возможный вариант: ГТА ЦАА ГЦА ГГЦ AAA ЦАГ ТЦТ.

6. Возможный вариант: ГАТ ЦТГ ТТА АТА АЦА ТТГ.

Последовательность аминокислот: глицин — серии — гистидин— лейцин— валин— серии.

Последовательность аминокислот в белке: цистеин — глицин — тирозин — аргинин — пролин — триптофан.При «выбивании» пятого нуклеотида имеем следующие результаты:

Последовательность аминокислот в белке изменится: цистеин — глицин — треонин — глицин — гистидин.

9. Последовательность аминокислот: треонин — треонин — глутамин — изолейцин — аргинин — аргинин.

Читайте так же:  Какой протеин для похудения

10. Последовательность аминокислот: аргинин — глицин — фенилаланин — фенилаланин — тирозин — пропин — валин. При выпадении первого нуклеотида (Т) изменится порядок считывания триплетов, образование иРНК, число и последовательность аминокислот в белке. Последовательность аминокислот в белке изменится: глутаминовая кислота — глицин — фенилаланин — серии — изолейцин — глицин.

Оренбургская область Шарлыкский район село Дубровка улица Школьная, 8

Электронный адрес автора: [email protected]

[1]

Муниципальное общеобразовательное учреждение «Дубровская средняя общеобразовательная школа»

Chemistry48.Ru

Сайт учителя химии и биологии МБОУ СОШ №2 с.Казаки Елецкого р-на Липецкой обл. Радиной М.В.

Темы на форуме Автор Дата

Ответы на тренировочные тесты «Биосинтез белка»

В чем проявляется роль ДНК в биосинтезе белка?

В ДНК содержится наследственная информация о первичной структуре белков

Как происходит синтез полипептидной цепи на рибосоме?

1) тРНК взаимодействуют с аминокислотами, присоединяя

их при участии ферментов с затратами энергии, и доставляют их к рибосомам.

2) В соответствии с принципом комплементарности триплеты двух тРНК присоединяются к двум триплетам иРНК, расположенным на рибосоме.

3) Между аминокислотами, присоединенными к тРНК, образуется пептидная связь, рибосома перемещается по иРНК на следующий триплет, к которому присоединяется новая тРНК с аминокислотой, и так с иРНК считывается информация до ее конца.

В процессе трансляции участвовало 30 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

1) одна тРНК транспортирует одну аминокислоту, следовательно, 30 тРНК соответствуют 30 аминокислотам, и белок состоит из 30 аминокислот;

2) одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодируют 30 триплетов;

3) количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, 30 х 3 = 90

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы иРНК и тРНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?

1) первичная структура белка определяется последовательностью аминокислот;

Матрицами для синтеза белка являются одинаковые молекулы иРНК, в которых закодирована одна и та же первичная структура белка.

В биосинтезе полипептида участвовали тРНК с антикодонами УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц) в двуцепочечной молекуле ДНК. Ответ поясните.

1) антикодоны тРНК комплементарны кодонам иРНК, а последовательность нукдеотидов иРНК комплементарна одной из цепей ДНК;

2) участок одной цепи ДНК — ТТА ГГЦ ЦГЦ АТТ ЦГТ, а состав второй цепи ДНК — ААТ ЦЦГ ГЦГ ТАА ГЦА;

3) число нуклеотидов: А — 7, Т — 7, Г — 8, Ц — 8.

Какие реакции относятся к реакциям матричного синтеза?

[3]

1) самоудвоение ДНК;

2) образование мРНК, тРНК и рРНК на молекуле ДНК;

3) биосинтез белка на мРНК?

Известно, что в процессе трансляции на и-РНК нанизывается большое количество рибосом. Какие белковые молекулы они синтезируют: одинаковые или разные?

— в рибосомах происходит сборка белковых молекул из аминокислот, которые доставляют сюда т-РНК; в сборке участвуют ферменты, имеющиеся в рибосомах;

— и-РНК служит матрицей для сборки белков, так как последовательность аминокислот в будущей молекуле белка определяется последовательностью нуклеотидов в молекуле и-РНК. Делаем вывод: рибосомы содержат необходимый для синтеза белков материал, а и-РНК содержит информацию, от которой зависит специфика будущей молекулы белка.

Все рибосомы, находящиеся на и-РНК, синтезируют одинаковые белковые молекулы, так как характер будущего белка зависит не от рибосом, а от последовательности нуклеотидов в и-РНК.

В каких реакциях обмена веществ осуществляется связь между ядром, эндоплазматическон сетью, ри­босомами, митохондриями?

В процессе биосинтеза белка наследственная информация, находящаяся в ядре клетки с помощью и-РНК (транскрипция) пе­реносится к рибосомам, где реализуется в последовательность ами­нокислот белка (трансляция). Рибосомы располагаются как в цито­плазме, так и на мембранах ЭПС, по которой образовавшиеся бел­ковые молекулы транспортируются по клетке- Все реакции проте­кают с использованием энергии молекул АТФ, образованных в ми­тохондриях.

Ответ: В реакциях биосинтеза белка в клетке.

Биосинтез белков, код ДНК, транскрипция

В каждой клетке синтезируется несколько тысяч различных белковых молекул. Белки недолговечны, время их существования ограничено, после чего они разрушаются. Способность синтезировать строго определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов в ДНК.

В геноме человека менее 100 000 генов, которые находятся в 23 хромосомах. Одна хромосома содержит несколько тысяч генов, которые располагаются в линейном порядке в определенных участках хромосомы — локусах.

Видео удалено.
Видео (кликните для воспроизведения).

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомальных РНК.

Итак, последовательность нуклеотидов каким-то образом кодирует последовательность аминокислот. Все многообразие белков образовано из 20 различных аминокислот, а нуклеотидов в составе ДНК — 4 вида. Если предположить, что один нуклеотид кодирует одну аминокислоту, то 4 нуклеотидами можно закодировать 4 аминокислоты, если 2 нуклеотида кодируют одну аминокислоту, то количество кодируемых кислот возрастает до 4 2 — 16. Значит, код ДНК должен быть триплетным. Было доказано, что именно три нуклеотида кодируют одну аминокислоту, в этом случае можно будет закодировать 4 3 — 64 аминокислоты. А так как аминокислот всего 20, то некоторые аминокислоты должны кодироваться несколькими триплетами.

В настоящее время известны следующие свойства генетического кода:

1. Триплетность: каждая аминокислота кодируется триплетом нуклеотидов.

2. Однозначность: кодовый триплет, кодон, соответствует только одной аминокислоте.

3. Вырожденность (избыточность): одну аминокислоту могут кодировать несколько (до шести) кодонов.

4. Универсальность: генетический код одинаков, одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у всех организмов Земли.

5. Неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов. (Жил был кот тих был сер мил мне тот кот);

6. Из 64 кодовых триплетов 61 кодон — кодирующие, кодируют аминокислоты, а 3 — бессмысленные, не кодируют аминокислоты, терминирующие синтез полипептида при работе рибосомы (УАА, УГА, УАГ). Кроме того, есть кодон — инициатор (метиониновый), с которого начинается синтез любого полипептида.

Читайте так же:  Какие витамины в жимолости
Первое Основание Второе основание Третье основание
У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен Фен Лей Лей Сер Сер Сер Сер Тир Тир – – Цис Цис – Три У(А) Ц(Г) А(Т) Г(Ц)
Ц(Г) Лей Лей Лей Лей Про Про Про Про Гис Гис Глн Глн Арг Арг Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
А(Т) Иле Иле Иле Мет Тре Тре Тре Тре Асн Асн Лиз Лиз Сер Сер Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
Г(Ц) Вал Вал Вал Вал Ала Ала Ала Ала Асп Асп Глу Глу Гли Гли Гли Гли У(А) Ц(Г) А(Т) Г(Ц)

Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

В начале 50 гг. Ф. Крик сформулировал центральную догму молекулярной биологии:

Информация о белке находится на ДНК, на матрице ДНК синтезируется иРНК, которая является матрицей для синтеза белковой молекулы. Матричный синтез позволяет очень точно и быстро синтезировать макромолекулы полимеров, состоящие из огромного количества мономеров. С реакциями матричного синтеза мы встречались при удвоении молекулы ДНК, синтез иРНК (транскрипция) и синтез молекулы белка на иРНК (трансляция) — также реакции матричного синтеза.

Транскрипция. В соответствии с принятыми соглашениями, начало гена на схемах изображают слева (рис. 292). У некодирующей цепи молекулы ДНК левый конец 5′, правый 3′; у кодирующей, матричной, с которой идет транскрипция — противоположное направление. Фермент, отвечающий за синтез иРНК, РНК-полимераза, присоединяется к промотору, который находится на 3′-конце матричной цепи ДНК и движется всегда от 3′ к 5′ концу. Промотор — определенная последовательность нуклеотидов, к которой может присоединиться фермент РНК-полимераза. Необходим для того, чтобы синтез иРНК был начат строго в начале гена. Из свободных рибонуклеозидтрифосфатов (АТФ, УТФ, ГТФ, ЦТФ), комплементарных нуклеотидам ДНК, РНК-полимераза образует иРНК.

Рис. 292. Транскрипция, схема образования иРНК на матрице ДНК.

Энергия для синтеза иРНК содержится в макроэргических связях рибонуклеозидтрифосфатов. Период полураспада мРНК исчисляется часами и даже сутками, т.е. они стабильны.

Транскрипция и трансляция разобщены в пространстве и во времени, транскрипция протекает в ядре и в одно время, трансляция происходит в цитоплазме и совсем в другое время. Для транскрипции необходимы: 1 — кодирующая цепь ДНК, матрица; 2 — ферменты, один из них РНК-полимераза; 3 — рибонуклеозидтрифосфаты.

Трансляция

Трансляция — процесс образования полипептидной цепи на матрице иРНК, или преобразование информации, закодированной в виде последовательности нуклеотидов иРНК, в последовательность аминокислот в полипептиде. Синтез белковых молекул происходит в цитоплазме или на шероховатой эндоплазматической сети. В цитоплазме синтезируются белки для собственных нужд клетки, белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки.

Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК. В клетке их более 30 видов, длина тРНК от 76 до 85 нуклеотидных остатков, они имеют третичную структуру за счет спаривания комплементарных нуклеотидов и по форме напоминают лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. На верхушке антикодоновой петли каждая тРНК имеет антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3′-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединить именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

Двадцать видов аминокислот кодируются 61 кодовым триплетом, теоретически может иметься 61 вид тРНК с соответствующими антикодонами, то есть у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне не всегда важен). Обнаружено всего более 30 различных тРНК (рис. 293).

Рис. 293. Аланиновые тРНК, чьи антикодоны комплементарны кодовым триплетам ГЦУ, ГЦЦ, ГЦА, ГЦГ.

Органоиды, отвечающие за синтез белков в клетке — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70-S рибосомы) и в цитоплазме: в свободном виде и на мембранах эндоплазматической сети (80-S рибосомы). Малая субчастица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы различают функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три в пептидильном и три в аминоацильном участках.

Рис. 294. Инициация трансляции.

Синтез белка начинается с того момента, когда к 5′-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК с аминокислотой метионин (рис. 294). Любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислоты.

Затем происходит присоединение большой субчастицы рибосомы и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.

Пептидилтрансферазный центр большой субчастицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ (рис. 295).

Рис. 295. Этапы трансляции.

Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. Затем все повторяется, образуется пептидная связь между второй и третьей аминокислотами.

Трансляция идет до тех пор, пока в А-участок не попадает стоп-кодон (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения, белковая цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субчастиц рибосомы.

Многие белки синтезируются в виде предшественников, содержащих ЛП — лидерную последовательность (15 — 25 аминокислотных остатков на N-конце, «паспорт белка»). ЛП определяют места назначения белков, «направление» белка (в ядро, в митохондрию, в пластиды, в комплекс Гольджи). Затем протеолитические ферменты отщепляют ЛП.

Читайте так же:  За что отвечает креатин в крови

Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе принимали участие 10 человек в течение трех лет.

Таким образом, для трансляции необходимы: 1 — иРНК, кодирующая последовательность аминокислот в полипептиде; 2 — рибосомы, декодирующие иРНК и образующие полипептид; 3 — тРНК, транспортирующие аминокислоты в рибосомы; 4 — энергия в форме АТФ и ГТФ для присоединения аминокислот к рибосоме и для работы рибосомы; 5 — аминокислоты, строительный материал; 6 — ферменты (аминоацил-тРНК-синтетазы и др.).

Дата добавления: 2016-05-30 ; просмотров: 2158 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Фрагмент молекулы белка состоит из 36 аминокислотных остатков. Определите число триплетов в гене, кодирующих этот фрагмент белка, число нуклеотидов в и‑РНК, число т‑РНК, участвующих в синтезе этого фрагмента белка? Ответ поясните.

Одну аминокислоту кодирует 1 триплет.В данном случае у нас 36 аминокислотных остатоков,значит триплетов будет 36.

Одну аминокислоту кодирует 3 нуклеотида,значит нуклеотидов в и-РНК будут:

нуклеотидов в и-РНК.

Число триплетов т-РНК равно числу триплетов в и-РНК,т.е. равняется 36.

ОТВЕТ: Число триплетов в гене = 36
Число нуклеотидов в и-РНК = 108
Число триплетов в т-РНК = 36

Если ответ по предмету Биология отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Раздел 3. Определение последовательности аминокислот в белке по исходной ДНК

Раздел 2. Определение количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК

Основная информация:

· Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.

· Информация о первичной структуре молекулы белка зашифрована в полинуклеотидной цепи ДНК.

· Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача

. В трансляции участвовало 75 молекул тРНК. Опреде­лите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует данный белок.

Решение:

Одна молекула тРНК доставляет к рибосоме одну аминокисло­ту. В трансляции участвовало 75 молекул тРНК, следовательно, в состав синтезированного белка входит 75 аминокислот.

Каждая аминокислота кодируется одним триплетом ДНК, поэто­му участок ДНК, кодирующий данный белок, содержит 75 триплетов.

Каждый триплет — это три нуклеотида, следовательно, указан­ный участок ДНК содержит 75 х 3 = 225 нуклеотидов.

Ответ: 75 аминокислот, 75 триплетов ДНК, 225 нуклеотидов ДНК.

Задача.Белок состоит из

200 аминокислот. Установите, во сколько раз молекулярная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя молекулярная масса аминокислоты — 110, а нуклеоти­да —300.Ответ поясните.

Решение:

Средняя масса аминокислоты — 110, количество аминокислот

в белке — 200, следовательно, молекулярная масса белка 110×200 = 22000.

Каждая аминокислота кодируется тремя нуклеотидами, сле­довательно, количество нуклеотидов в указанном участке гена 200 х 3 = 600.

Молекулярная масса участка гена составляет 600 х 300 = 180000.

180000 / 22000 = 8,2, т. е. молекулярная масса участка гена в 8,2 раза больше молекулярной массы кодируемого белка.

Ответ: в 8,2 раза.

1. В трансляции участвовало 50 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

2. В трансляции участвовало 30 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

3. В трансляции участвовало 60 молекул тРНК. Определите чис­ло аминокислот, входящих в состав синтезируемого белка, а также число кодонов иРНК и количество нуклеотидов в двухцепочечном фрагменте ДНК, содержащем информацию о первичной структуре данного белка.

4. В трансляции участвовало 80 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

5. В трансляции участвовало 110 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

6. Фрагмент ДНК состоит из 72 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

7. Участок цепи ДНК, кодирующий первичную структуру полипеп­тида, состоит из 510 нуклеотидов. Определите число нуклеотидов соответствующей иРНК, число аминокислот в белке и количество тРНК, необходимых для переноса этих аминокислот к месту синтеза. Ответ поясните.

8. Фрагмент ДНК состоит из 93 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

9. Фрагмент ДНК состоит из 66 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

10. Фрагмент ДНК состоит из 120 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.

11. Белок состоит из 240 аминокислот. Установите число нуклео­тидов молекуле иРНК и в двухцепочечном фрагменте ДНК, кодирую­щем данный белок, и число молекул тРНК, необходимых для пере­носа аминокислот к месту синтеза белка.

12. Белок состоит из 150 аминокислот. Определите примерную мо­лекулярную массу соответствующей иРНК, если известно, что сред­няя молекулярная масса нуклеотида — 300.

13. Альфа-цепь гемоглобина содержит 141 аминокислотный остаток. Определите длину участка ДНК, кодирующего последо­вательность аминокислот в а-цепи, если известно, что расстояние между нуклеотидами составляет 0,34 нм.

14. Полипептид состоит из 20 аминокислот. Определите число нуклеотидов на участке гена, который кодирует первичную структуру этого полипептида, число кодонов на и-РНК, соответствующее этим аминокислотам, и число молекул т-РНК, участвующих в биосинтезе этого полипептида. Ответ поясните.

15. Белок состоит из 100 аминокислот. Установите, во сколько раз молекулярная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя молекулярная масса аминокислоты — 110, а нуклеотида— 300. Ответ поясните.

16. полипептида, состоит из 15 нуклеотидов. Определите число нуклеотидов на и-РНК, кодирующих аминокислоты, число аминокислот в полипептиде и количество т-РНК, необходимых для переноса этих аминокислот к месту синтеза. Ответ поясните.

Читайте так же:  Аминокислоты являются мономерами в молекулах

17. Информационная часть и-РНК содержит 120 нуклеотидов. Определите число аминокислот, входящих в кодируемый ею белок, число молекул т-РНК, участвующих в процессе биосинтеза этого белка, число триплетов в участке гена, кодирующих первичную структуру этого белка. Объясните полученные результаты.

18. Фрагмент нуклеотидной цепи ДНК имеет последовательность А-А-Г-Т-Г-А-Ц. Определите нуклеотидную последовательность второй цепи и общее число водородных связей, которые образуются между двумя цепями. Объясните полученные результаты.

19. Две цепи молекулы ДНК удерживаются друг против друга водородными связями. Определите число нуклеотидов с аденином, тимином, гуанином и цитозином в молекуле ДНК, в которой 30 нуклеотидов соединяются между собой двумя водородными связями, и 20 нуклеотидов — тремя водородными связями. Объясните полученные результаты.

Раздел 3. Определение последовательности аминокислот в белке по исходной ДНК

Основная информация:

При решении задач этого типа необходимо помнить и обязательно указывать в пояснениях следующее:

· Транскрипция — это процесс синтеза и-РНК по матрице ДНК.

· нуклеотиды иРНК комплементарны нуклеотидам ДНК;

· вместо тимина во всех видах РНК записывается урацил;

· нуклеотиды иРНК пишутся подряд, без запятых, т. к. имеется в виду одна молекула;

· антикодоны тРНК пишутся через запятую, т. к. каждый антикодон принадлежит отдельной молекуле тРНК;

· аминокислоты находим по таблице генетического кода;

· если дана таблица генетического кода для иРНК, значит, исполь­зуем кодоны иРНК:

· аминокислоты в белке пишутся через дефис, т. к. имеется в виду, что они уже соединились и образовали первичную структуру белка.

Генетический код (и-РНК)

Фен Сер Тир Цис У Фен Сер Тир Цис Ц Лей Сер — — А Лей Сер — Три Г Лей Про Гис Арг У Лей Про Гис Арг Ц Лей Про Глн Арг А Лей Про Глн Арг Г Иле Тре Асн Сер У Иле Тре Асн Сер Ц Иле Тре Лиз Арг А Мет Тре Лиз Арг Г

Вал Ала Асп Гли У Вал Ала Асп Гли Ц Вал Ала Глу Гли А Вал Ала Глу Гли Г

Задача. Фрагмент цепи ДНК имеет последовательность АЦГТТГЦЦЦААТ. Определите последовательность нуклеотидов иРНК, антикодоны тРНК и последовательность аминокислот в синтезируемом белке.

[2]

2) Пояснения. иРНК строим комплементарно ДНК; антикодоны тРНК комплементарны кодонам иРНК; аминокислоты находим по кодонам иРНК, используя таблицу генетического кода.

1. Фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

2. Отрезок молекулы ДНК, кодирующий первичную структуру белка, имеет последовательность ТЦАТГГЦТТАГГ. Определите последова­тельность нуклеотидов иРНК, антикодоны тРНК, участвующих в синте­зе белка, и последовательность аминокислот в синтезируемом белке.

3. Скорость транскрипции составляет примерно 50 нуклеотидов в секунду. Сколько времени потребуется для синтеза иРНК, несущей ин­формацию о белке, состоящем из 200 аминокислот? Ответ поясните.

4. Скорость трансляции составляет примерно 6 триплетов в се­кунду. Сколько времени потребуется для синтеза белка, состоящего из 180 аминокислот?

5. Фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

6. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

7. Фрагмент одной из цепей ДНК имеет следующее строение: ААГЦГТГЦТЦАГ. Постойте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

8. Фрагмент одной из цепей ДНК имеет следующее строение: ЦЦАТАТЦЦГГАТ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

9. Фрагмент одной из цепей ДНК имеет следующее строение: АГТТТЦТТТЦАА. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

10. Фрагмент одной из цепей ДНК имеет следующее строение: ГАТТАЦЦТАГТТ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

11. Фрагмент одной из цепей ДНК имеет следующее строение: ЦТАТЦЦГЦТГТЦ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

12. Фрагмент одной из цепей ДНК имеет следующее строение: ААГЦТАЦАГАЦЦ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

13. Фрагмент одной из цепей ДНК имеет следующее строение: ГГТГЦЦГГАААГ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

14. Фрагмент одной из цепей ДНК имеет следующее строение: ЦЦЦГТАААТТЦГ. Постройте на ней и-РНК и определите последовательность аминокислот в фрагменте молекулы белка и антикодоны т-РНК (для этого используйте таблицу генетического кода).

15. Фрагмент молекулы ДНК, определяющий первичную структуру полипептида, имеет последовательность нуклеотидов ГТЦАТГГЦТТАГ. Определите аминокислотную последовательность, а также последовательность и-РНК, число т-РНК и нуклеотидный состав их антикодонов, участвующих в биосинтезе белка. Объясните полученные результаты.

Видео удалено.
Видео (кликните для воспроизведения).

Дата добавления: 2018-02-28 ; просмотров: 2036 ; ЗАКАЗАТЬ РАБОТУ

Источники


  1. Ахманов, М. Диабет в пожилом возрасте / М. Ахманов. — М.: Вектор, 2012. — 220 c.

  2. Вечерская, Ирина 100 рецептов блюд, богатых микроэлеметами. Вкусно, полезно, душевно, целебно / Ирина Вечерская. — М.: Центрполиграф, 2013. — 173 c.

  3. CD-ROM. Справочник диетолога. — Москва: Наука, 2013. — 539 c.
  4. Борисова, Вера Гимнастика. Стретчинг / Вера Борисова , Татьяна Шестакова. — М.: Бибком, 2011. — 794 c.
Одну аминокислоту молекулы белка кодирует
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here