Последовательность аминокислот в полипептидной

Сегодня предлагаем ознакомится со статьей на тему: последовательность аминокислот в полипептидной с профессиональным описанием и объяснением.

Методы определения С-концевой аминокислоты

Для определения природы С-концевой аминокислоты часто используют ферментативные методы. Обработка полипептида карбоксипептидазой, которая разрывает пептидную связь с того конца пептида, где содержится свободная СООН-группа, приводит к освобождению С-концевой аминокислоты, природа которой может быть идентифицирована методом хроматографии.

Предложен также химический метод Акабори (S. Akabori), который основан на гидразинолизе полипептида:

Гидразин, вызывая распад чувствительных к нему пептидных связей полипептида, реагирует со всеми аминокислотами, за исключением С-концевой аминокислоты, поскольку ее карбоксильная группа не участвует в образовании пептидной связи. При этом образуется смесь аминоацил-гидразинов и свободной С-концевой аминокислоты. Последнюю после обработки всей смеси ДНФБ отделяют и идентифицируют хроматографи-чески, для чего образовавшиеся динитрофенилпроизводные аминоацил-гидразинов предварительно экстрагируют уксусно-этиловым эфиром.

С-концевую аминокислоту идентифицируют также путем обработки полипептида восстанавливающим агентом, например боргидридом натрия. В простейшей форме эту процедуру можно представить в следующем виде:

Видно, что в указанных условиях только одна, а именно С-концевая, аминокислота будет превращаться в α-аминоспирт, легко идентифицируемый методом хроматографии. Таким образом, при помощи указанных методов определяют природу N- и С-концевых аминокислот.

Следующий этап работы связан с определением чередования (последовательности) аминокислот внутри полипептидной цепи. Для этого сначала проводят избирательный, частичный (химический и ферментативный), гидролиз полипептидной цепи на короткие пептидные фрагменты, последовательность аминокислот в которых может быть точно определена описанными ранее методами.

Химические методы избирательного и неполного гидролиза основаны на применении таких химических реактивов, которые вызывают селективный, высокоспецифический разрыв пептидных связей, образованных определенными аминокислотами, оставляя незатронутыми остальные пептидные связи. К этим избирательно гидролизующим веществам относятся цианогенбромид, CNBr (по остаткам метионина), гидроксиламин (по связям между остатками аспарагиновой кислоты и глицина), N-бромсукцинамид (по остаткам триптофана). Метионина в составе белков содержится обычно меньше, чем других аминокислот, поэтому обработка CNBr предпочтительнее, так как при этом образуется небольшое число пептидов, первичную структуру которых определяют с помощью рассмотренных ранее методов, всякий раз начиная с определения природы N- и С-концевых аминокислот.

Ферментативные методы гидролиза основаны на избирательности действия протеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин – аргинина и лизина, химотрипсин – триптофана, тирозина и фенилаланина. Ряд других ферментов, например папаин, субтилизин, проназа и другие бактериальные протеиназы, также используется для неполного гидролиза белков. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах.

Метод составления пептидных карт, получивший образное название «метод отпечатков пальцев», используется при определении сходства или различия гомологичных белков по первичной структуре. Белок инкубируют с каким-либо протеолитическим ферментом. Часто порции белка инкубируют как с пепсином, так и с трипсином. При этом вследствие гидролиза строго определенных пептидных связей образуется смесь коротких пептидов, легко разделяемых с помощью хроматографии в одном направлении и электрофореза – в другом , под углом 90° от первого (пептидная карта).

Дальнейшие задачи – установление последовательности расположения аминокислот в каждом из выделенных пептидов (фенилтиогидантоиновым или другими методами), сопоставление полученных данных и установление первичной структуры всей молекулы.

Возможность применения рентгеноструктурного анализа для определения последовательности аминокислот в белковой молекуле была рассмотрена ранее. Следует отметить совершенно новый подход к решению этой важной проблемы – определение последовательности аминокислот в белковой молекуле с использованием данных о комплементарной нуклеотидной последовательности ДНК. Этому способствуют как методы быстрого секвенирования ДНК, так и техника изолирования и доступности самого гена.

В настоящее время выяснение первичной структуры белков является вопросом времени и технического оснащения лабораторий. Полностью выяснена первичная структура многих природных белков и прежде всего инсулина, содержащего 51 аминокислотный остаток [Сэнджер Ф., 1954]. Более крупным белком с выясненной первичной структурой оказался иммуноглобулин, в четырех полипептидных цепях которого насчитывается 1300 аминокислотных остатков. За эту работу Дж. Эдельман и Р. Портер были удостоены Нобелевской премии (1972).

Рис. 1.14. Структура проинсулина.

Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), α-цепи (141) и β-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А – 21 и В – 30 аминокислотных остатков), образуется из своего предшественника – про-инсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом:

Между цепями А и В и внутри А-цепи инсулина образуются дисуль-фидные (—S—S—) связи. Выяснена первичная структура более 18 инсули-

нов, выделенных из разных источников. Близкими по первичной структуре оказались инсулины из поджелудочной железы человека, свиньи и кашалота. Единственным отличием инсулина человека является нахождение треонина в положении 30 В-цепи вместо аланина.

Читайте так же:  Лучший глютамин в порошке

Вторым белком, первичная структура которого расшифрована С. Муром и У. Стейном, является рибонуклеаза (рис. 1.15) из поджелудочной железы, катализирующая расщепление РНК. Фермент состоит из 124 аминокислотных остатков с N-концевым лизином и С-концевым валином, между остатками цистеина образуются дисульфидные (—S—S—) связи в 4 участках.

Полностью расшифрована последовательность аминокислот полипептидной цепи фермента лизоцима, имеющего важное защитное и медицинское значение, так как он вызывает лизис ряда бактерий, расщепляя основное вещество их клеточной оболочки. Лизоцим белка куриного яйца содержит 129 аминокислот (рис. 1.16) с N-концевым лизином и С-концевым лейцином.

Отечественными исследователями установлена первичная структура многих белков и полипептидов, в том числе крупного белка РНК-полимера-зы (в частности, последовательности ее β- и β 1 -субъединиц, 1342 и 1407 аминокислотных остатков соответственно фактора элонгации G из Е.coli (701 аминокислота) (Ю.А. Овчинников и др.), фермента аспартатамино-трансферазы, состоящей из 412 аминокислотных остатков (А.Е. Браун-штейн, Ю.А. Овчинников и др.), леггемоглобина, белка L25 из рибосом E.coli, нейротоксинов из яда кобры (Ю.А. Овчинников и др.), пепсиногена и пепсина (В.М. Степанов и др.), L-липотропина и лактогенного гормона быка (Н.А. Юдаев, Ю.А. Панков) и др.

Рис. 1.15. Первичная структура РНКазы. Цветом выделены четыре дисульфидные связи.

Рис. 1.16. Первичная структура полипептидной цепи лизоцима (схема).

Исследования первичной структуры α- и β-цепей гемоглобина способствовали выяснению структуры необычных, так называемых аномальных, гемоглобинов, встречающихся в крови больных гемоглобинопатиями. Иногда развитие болезни, как и изменение пространственной структуры гемоглобина человека, обусловлено заменой лишь одной какой-либо аминокислоты в структуре β-цепей (реже α-цепей) гемоглобина (см. главу 2).

Анализ данных о первичной структуре белков позволяет сделать следующие общие выводы.

1. Первичная структура белков уникальна и детерминирована генетически. Каждый индивидуальный гомогенный белок характеризуется уникальной последовательностью аминокислот: частота замены аминокислот приводит не только к структурным перестройкам, но и к изменениям физико-химических свойств и биологических функций.

2. Стабильность первичной структуры обеспечивается в основном глав-новалентными пептидными связями; возможно участие небольшого числа дисульфидных связей.

[3]

3. В полипептидной цепи могут быть обнаружены разнообразные комбинации аминокислот; в полипептидах относительно редки повторяющиеся последовательности.

4. В некоторых ферментах, обладающих близкими каталитическими свойствами, встречаются идентичные пептидные структуры, содержащие неизменные (инвариантные) участки и вариабельные последовательности аминокислот, особенно в областях их активных центров. Этот принцип структурного подобия наиболее типичен для ряда протеолитических ферментов: трипсина, химотрипсина и др. (см. главу 4).

5. В первичной структуре полипептидной цепи детерминированы вторичная, третичная и четвертичная структуры белковой молекулы, определяющие ее общую пространственную конформацию.

Последовательность аминокислот в полипептидной

Ответ оставил Гость

а) АТТ ГГЦ ЦАГ ТАТ ЦТТ —> УАА ЦЦГ ГУЦ АУА ГАА —> Стоп кодон Пролін Валін Ізолейцин Глутамінова кислота

б) ГАЦ ГГА АЦГ ТТТ ЦГЦ —> ЦУГ ЦЦУ УГЦ ААА ГЦГ —> Лейцин Пролін Цистеїн Лізин Лейцин Пролін

Я точно не знаю чи це (те що знизу) правильно бо я не дуже зрозумів 2 останніх питання

а) Валін Ізолейцин Глутамінова кислота (удалить из ДНК первые два нуклеотида)

б) Лейцин Пролін Лейцин Пролін ( Если удалить третий и четвертый слева)

Нельзя всё время учиться. А для развлечения мы рекомендуем вам поиграть в отличную игру:

Последовательность аминокислот в полипептидной

22.5.4. Расшифровка кода

Для того чтобы понять ход экспериментов, проводившихся с целью установить, какие триплеты соответствуют тем или иным аминокислотам (т.е. расшифровать генетический код), нужно иметь представление о механизме, с помощью которого триплетный код переводится в структуру белковой молекулы.

В синтезе белка участвуют нуклеиновые кислоты двух типовь — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), взаимодействующие друг с другом. Существует три главных типа РНК: информационная, или матричная, РНК (мРНК), рибосомная РНК (рРНК) и транспортная РНК (тРНК) * . ДНК содержится и в таких органеллах, как митохондрии и хлоропласты, но в основном она сосредоточена в ядре, где ее нуклеотидная последовательность копируется (транскрибируется) с образованием матричной РНК (мРНК), переходящей из ядра в цитоплазму. Оказавшись в цитоплазме, нить мРНК прикрепляется к рибосомам, где нуклеотидная последовательность мРНК транслируется в аминокислотную последовательность белка. Каждая аминокислота связывается с соответствующей тРНК, которая присоединяется к комплементарному триплету оснований мРНК. Аминокислоты, оказавшиеся в результате этого друг подле друга, соединяются, образуя полипептидную цепь. Таким образом, для белкового синтеза необходимы ДНК, мРНК, рибосомы, тРНК, аминокислоты, АТФ и ГТФ как источники энергии и различные ферменты и кофакторы, катализирующие каждую стадию этого процесса.

* ( Сейчас известны еще предшественники мРНК и рРНК-пре-мРНК и пре-рРНК, а также низкомолекулярные РНК (помимо транспортных)-нмРНК- Прим. ред.

)


Таблица 22.4. Последовательности оснований в триплетах и кодируемые ими аминокислоты. Приведены кодоны т. е. триолеты оснований в мРНК, а не в ДНК. В ДНК содержатся комплементарные основания, а У заменен на Т. 2-е основание

* ( Кодон, означающий конец синтеза полипептидной цепи.

)

Как видно из табл. 22.4, для большинства аминокислот имеется по нескольку кодонов. Код, в котором число аминокислот меньше числа кодонов, называют вырожденным. Кроме того, можно видеть, что для многих аминокислот существенное значение имеют только первые буквы. Три из представленных в табл. 22.4 кодонов не кодируют аминокислот («нонсенс-кодоны») и действуют как «стоп-сигнал» — означают конец закодированного сообщения. По-видимому, стоп-кодон — это концевая точка функциональной единицы ДНК-цистрона.

Во всех экспериментах, проводившихся с целью расшифровки генетического кода, в качестве источника триплетов использовалась мРНК. Однако от одной клетки другой и от одного поколения другому «генетический текст» передается последовательностью триплетов в ДНК. Поскольку мРНК образу-ется непосредственно на полинуклеотидной цепи ДНК путем комплементарного спаривания оснований, запись наследуемого генетического «текста» ДНК комплементарна его записи в мРНК. Код ДНК можно получить, заменяя основания, содержащиеся в РНК, комплементарными им основаниями ДНК в соответствии с табл. 22.5.

Читайте так же:  Витамины б6 и б12


Таблица 22.5. Комплементарность между основаниями РНК и ДНК

22.6. Выпишите последовательность оснований в мРНК, образованной на цепи ДНК с такой последовательностью:

Одна из примечательных особенностей генетического кода состоит в том, что он, по-видимому, универсален. У всех живых организмов имеются одни и те же 20 аминокислот и одни и те же пять азотистых оснований (А, Г, Т, Ц и У). Ниренберг показал, что если ввести мРНК, взятую от вида А, в бесклеточную систему от вида Б, то в ней начнется синтез того же полипептида, который образовался бы у вида А. Например, в бесклеточных экстрактах Е. coli, в которые добавляли мРНК, кодирующую гемоглобин млекопитающего, синтезировались молекулы гемоглобина, свойственного этому млекопитающему * .

* ( Оказалось, однако, что код митохондриальной ДНК несколько отличается от универсального кода -Прим. ред.

)

Некоторые кодоны служат «стартовыми» (инициирующими) сигналами — означают начало полипептидной цепи (как, например, АУГ — кодон метионина), тогда как другие, такие как УАА,- не кодируют ни одну аминокислоту, а служат «стоп-сигналами», т.е. означают конец синтеза полипептидной цепи.

В настоящее время успехи молекулярной биологии достигли такого уровня, что становится возможным определять последовательности оснований в целых генах и удалось даже расшифровать весь генетический «текст» одного организма-фага Фχ174. Это серьезная веха в развитии науки, поскольку теперь можно искусственно синтезировать целые гены, что уже нашло применение в генной инженерии (см. разд. 2.3.6).

Главные черты генетического кода можно вкратце сформулировать следующим образом.

1. Кодом, определяющим включение аминокислоты в полипептидную цепь, служит триплет оснований в полипептидной цепи ДНК.

2. Код универсален: одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов.

3. Код является вырожденным: данная аминокислота может кодироваться более чем одним триплетом.

4. Код неперекрывающийся: например, последовательность мРНК, начинающаяся с нуклеотидов АУГАГЦГЦА, не считывается как АУГ/УГА/ ГАГ. (перекрывание по двум основаниям) или АУГ/ГАГ/ГЦГ. (перекрывание по одному основанию). Недавно было обнаружено, однако, перекрывание некоторых генов у бактериофага Фχ174 и ряда других вирусов. Эти случаи, по-видимому, составляют исключение, возможно, связанное с экономным использованием нуклеиновой кислоты (количество которой у вирусов очень невелико) * .

* ( В этих случаях перекрывание состоит не в том, что соседние аминокислоты в белке кодируются перекрывающимися триплетами, а в том, что на одном участке ДНК закодированы два различных белка, имеющие разные точки инициации.-Прим. ред.

)

Определение аминокислотной последовательности в белке

Определение N-концевой аминокислоты в белке и последовательности аминокислот в олигопептидах

Фенилизотиоционат (ФИТЦ) — реагент, используемый для определения N-концевой аминокислоты в пептиде. Он способен реагировать с α-аминогруппой и α-карбоксильной группой свободных аминокислот, а также с N-концевой аминокислотой в пептидах (см. схему ниже).

В результате взаимодействия с N-концевой аминокислотой полипептида образуется фенил-тиогидантионовое производное, в котором дестабилизирована пептидная связь между α-карбоксильной группой N-концевой аминокислоты и α-аминогруппой второй аминокислоты в пептиде. Эта связь избирательно гидролизуется без повреждения других пептидных связей.

После реакции выделяют комплекс ФИТЦ-АК1, идентифицируют его хроматографическими методами. ФИТЦ можно использовать вновь с укороченным пептидом, полученным в предыдущем цикле, для определения следующей аминокислоты. Этот процесс ступенчатого расщепления пептида с N-конца был автоматизирован и реализован в приборе — секвенаторе, с помощью которого можно определять последовательность аминокислотных остатков в олигопептидах, состоящих из 10-20 аминокислот.

Многие полипептиды имеют первичную структуру, состоящую более чем из 100 аминокислот. Так как с помощью секвенаторов наиболее продуктивно определяют аминокислотную последовательность лишь небольших пептидов, молекулы полипептида расщепляют по специфическим местам на фрагменты.

Используя несколько разных расщепляющих агентов (ими могут быть ферменты или химические вещества) в разных пробах очищенного полипептида, можно получить частично перекрывающие друг друга фрагменты с установленной аминокислотной последовательностью. С их помощью можно воссоздать правильный порядок фрагментов и получить полную последовательность аминокислот в полипептидной цепи.

Ферментативное расщепление полипептида по специфическим участкам

Для специфического расщепления пептидных связей в белке можно использовать несколько разных ферментов. Наиболее широко используют ферментативный гидролиз полипептида протеолитическим ферментом — трипсином, который относят к группе пищеварительных ферментов (его вырабатывает поджелудочная железа). Фермент обладает высокой специфичностью действия. Он расщепляет пептидные связи, в образовании которых участвует карбоксильная группа остатков лизина или аргинина.

Исходя из установленного количества остатков лизина и аргинина, можно предсказать количество получаемых при гидролизе трипсином фрагментов. Так, если в полипептидной цепи 6 остатков аргинина и лизина, то при расщеплении трипсином можно получить 7 фрагментов. Затем в каждом фрагменте устанавливают аминокислотную последовательность.

Химическое расщепление полипептида по специфическим участкам

В некоторых случаях предпочтителен не ферментативный, а химический гидролиз. Так, реагент бромциан расщепляет только пептидные связи, в которых карбоксильная группа принадлежит остатку метионина. Зная количество остатков метионина в полипептидной цепи, легко установить количество получаемых фрагментов. Далее для каждого фрагмента в секвенаторе также устанавливают аминокислотную последовательность.

Получение аминокислотной последовательности полипептида с помощью перекрывающихся фрагментов

Для успешного установления последовательности полученных фрагментов полипептида необходимо получить пептиды с перекрывающимися аминокислотными последовательностями. Это достигают обработкой отдельных проб данного полипептида разными реагентами, расщепляющими белок в разных местах. Необходимо провести столько расщеплений, чтобы получить набор пептидов, обеспечивающих перекрывание всех участков, необходимых для определения последовательности исходного полипептида.

Читайте так же:  Л карнитин в аптеках таблетки

Рис. 4. Установление первичной структуры белка с помощью перекрывающихся пептидных фрагментов.

4. Отдельные представители пептидов: аспартам, глутатион.

Один из наиболее распространенных представителей трипептидов — глутатион — содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т.е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

Аспартам — дипептид, состоящий из остатков L-аспарагиновой кислоты и метилового эфира L-фенилаланина, используется в качестве заменителя сахара – низкокалорийной пищевой добавки. Почти в 200 раз слаще сахарозы.

Дата добавления: 2015-05-26 ; просмотров: 3740 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Биология и медицина

Белки: определение первичной последовательности

Видео удалено.
Видео (кликните для воспроизведения).

Определение аминокислотной последовательности полипептидной цепи основано на принципах, которые были развиты Сэнгером [ Sanger F, 1952 ]. Они используются и сегодня, правда со всевозможными вариациями и усовершенствованиями. Чтобы расшифровать аминокислотную последовательность любого полипептида, необходимо осуществить шесть основных стадий:

Стадия 1, — определение аминокислотного состава.

Первым шагом на пути к расшифровке аминокислотной последовательности служит гидролиз всех пептидных связей чистого полипептида. Образующаяся смесь аминокислот анализируется затем при помощи ионообменной хроматографии , что позволяет определить, какие аминокислоты и в каком соотношении присутствуют в гидролизате.

Стадия 2, — идентификация амино- и карбокси- концевых остатков.

В результате идентификации N- и С- концевых остатков полипептида получают две важных реперных точки для определения его аминокислотной последовательности (первичной структуры).

Стадия 3, — расщепление полипептидной цепи на фрагменты.

Берется еще одна порция анализируемого препарата, содержащего неповрежденные полипептидные цепи и расщепляются на более мелкие куски — короткие пептиды, состоящие в среднем из 10-15 аминокислотных остатков. Наиболее распространенный метод для проведения такого расщепления — это частичный ферментативный гидролиз пептида под воздействием пищеварительного фермента трипсина. Этот фермент обладает высокой специфичностью действия: гидролизу подвергаются только те пептидные связи, которые образованы между карбоксильной группой лизина или аргинина и аминогруппой любой аминокислоты. Число мелких фрагментов, образующихся под действием трипcина, можно, таким образом, предсказать, зная общее число остатков лизина и аргинина в исходном полипептиде. При этом все мелкие пептиды, кроме одного, должны иметь на карбоксильном конце остаток лизина или аргинина. Фрагменты, образовавшиеся под воздействием трипсина, разделяют методом ионообменной хроматографии на колонке, либо при помощи электрофореза и хроматографии на бумаге. Часто проводят двумерное хроматографическое разделение на листе бумаги, в результате чего получают хроматограмму с распределившимися на ней пептидами в виде пептидной карты.

Стадия 4, — определение последовательности пептидных фрагментов

Стадия 5,- расщепление исходной полипептидной цепи еще одним способом

Чтобы установить порядок расположения пептидных фрагментов, образовавшихся под действием трипсина, берут новую порцию препарата исходного полипептида и расщепляют его на более мелкие фрагменты каким-либо другим способом, при помощи которого расщепляются пептидные связи устойчивые к действию трипсина. Для этой цели предпочтительнее оказывается не ферментативные, а химические методы. Хорошие результаты дает обработка препарата бромцианом, расщепляющим только те пептидные связи, в которых карбонильная группа принадлежит остатку метионина. Каждый из полученных коротких пептидов подвергается последовательному расщеплению по методу Эдмана ( также как на стадии 4) и таким путем устанавливают их аминокислотную последовательность.

Стадия 6, — установление порядка расположения пептидных фрагментов по перекрывающимся фрагментам.

Аминокислотные последовательности в пептидных фрагментах, полученных двумя способами, сравнивают, чтобы во втором наборе найти пептиды, в которых последовательности отдельных участков совпадали бы с последовательностями тех или иных участков пептидов первого набора. Пептиды из второго набора с перекрывающимися участками позволяют соединить в правильном порядке пептидные фрагменты, полученные в результате первого расщепления исходной полипептидной цепи.

Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, для того чтобы найти перекрывающиеся участки для всех пептидов, полученных после первого расщепления. В этом случае применяется третий, а иногда и четвертый способ расщепления, чтобы получить в конце концов набор пептидов, обеспечивающих полное перекрывание всех участков и установление полной последовательности аминокислот в исходной полипептидной цепи.

Методы определения С-концевых аминокислот

Уровни структурной организации белков

Первичная структура – строго определенная линейная последовательность аминокислот в полипептидной цепочке.

Стратегические принципы изучения первичной структуры белка претерпевали значительные изменения по мере развития и усовершенствования применяемых методов. Следует отметить три основных этапа в их развитии. Первый этап начинается с классической работы Ф. Сенгера (1953) по установлению аминокислотной последовательности инсулина, второй – с широкого введения в структурный анализ белка автоматического секвенатора (начало 70-х годов 20 века), третий – с разработки скоростных методов анализа нуклеотидной последовательности ДНК (начало 80-х годов 20 века).

Первичная структура белка определяется:

1. Природой входящих в молекулу аминокислот.

2. Относительным количеством каждой аминокислоты.

3. Строго определенной последовательностью аминокислот в полипептидной цепи.

[1]

Предварительные исследования перед определением первичной структуры белка

1. Очистка белка

2. Определение молекулярной массы.

3. Определение типа и числа простетических групп (если белок конъюгированный).

Читайте так же:  Гуарана или аргинин что лучше

4. Определение наличия внутри- или межмолекулярных дисульфидных связей. Обычно одновременно определяют наличие в нативном белке сульфгидрильных групп.

5. Предварительная обработка белков, обладающих 4-й структурой, с целью диссоциации субъединиц, их выделения и последующего изучения.

Стадии определения первичной структуры белков и полипептидов

1. Определение аминокислотного состава (гидролиз, аминокислотный анализатор).

[2]

2. Идентификация N- и С-концевых аминокислот.

3. Расщепление полипептидной цепи на фрагменты (трипсин, химотрипсин, бромциан, гидроксиламин и др.).

4. Определение аминокислотной последовательности пептидных фрагментов (секвенатор).

5. Расщепление исходной полипептидной цепи другими способами и установление их аминокислотной последовательности.

6. Установление порядка расположения пептидных фрагментов по перекрывающимся участкам (получение пептидных карт).

Методы определения N-концевых аминокислот

1. Метод Сенгера.

2. Метод Эдмана (реализован в секвенаторе).

3. Реакция с дансилхлоридом.

4. Метод с применением аминопептидазы.

1. Метод Акабори.

2. Метод с применением карбоксипептидазы.

3. Метод с применением боргидрида натрия.

Общие закономерности, касающиеся аминокислотной последовательности белков

1. Не существует одной уникальной последовательности или группы частичных последовательностей, общих для всех белков.

2. Белки, выполняющие разные функции, имеют разные последовательности.

3. Белки со схожими функциями имеют похожие последовательности, однако совпадение последовательности проявляется обычно лишь в малой степени.

4. Одинаковые белки, выполняющие одинаковые функции, но выделенные из разных организмов, обычно имеют значительное сходство в последовательности.

5. Одинаковые белки, выполняющие одинаковые функции и выделенные из организмов одного вида, почти всегда обладают совершенно одинаковой последовательностью.

Высшие уровни структуры белков, их биологическая активность тесно связаны и фактически определяются аминокислотной последовательностью. То есть, первичная структура генетически детерминирована и определяет индивидуальные свойства белков, их видовую специфичность, на ее основе формируются все последующие структуры.

Вторичная структура белка – конфигурация полипептидной цепи, образующаяся в результате взаимодействий между её функциональными группами.

Разновидности вторичной структуры: 1. α-спираль. 2. Складчатый лист (β-структура). 3. Статистический клубок. Первые две разновидности представляют собой упорядоченное расположение, третья – неупорядоченное.

Супервторичная структура белков.

Сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой. Супервторичная структура формируется за счет межрадикальных взаимодействий.

Разновидности супервторичной структуры белков:

1. Супервторичная структура типа β-бочонка. Она действительно напоминает бочонок, где каждая β-структура расположена внутри и связана α-спиральным участком цепи, находящимся на поверхности. Характерна для некоторых ферментов – триозофосфатизомеразы, пируваткиназы.

2. Структурный мотив «α-спираль – поворот – α-спираль». Обнаружен во многих ДНК-связывающих белках.

3. Супервторичная структура в виде «цинкового пальца». Характерна также для ДНК-связывающих белков. «Цинковый палец» – фрагмент белка, содержащий около 20 аминокислот, в котором атом цинка связан с радикалами четырех аминокислот: обычно с двумя остатками цистеина и двумя – гистидина.

4. Супервторичная структура в виде «лейциновой застежки-молнии». Объединение протомеров или отдельных белков в комплексы иногда осуществляется с помощью структурных мотивов, называемых «лейциновая застежка-молния». Примером такого соединения белков могут служить гистоны. Это ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот – аргинина и лизина. Молекулы гистонов объединяются в комплексы с помощью «лейциновых застежек», несмотря на то, что все мономеры имеют сильный положительный заряд.

Содержание различных типов вторичных структур в белках.

Содержание типов вторичных структур в разных белках неодинаково.

По наличию α-спиралей и β-структур глобулярные белки можно разделить на 4 категории:

— К первой категории относятся белки, в структуре которых обнаружена только α-спираль. Это миоглобин, гемоглобин.

— Ко второй категории относят белки с α-спиралями и β-структурами. Характерные сочетания α-спиралей и β-структур обнаружены во многих ферментах: лактатдегидрогеназа, фосфоглицераткиназа.

— В третью категорию включены белки, имеющие только β-структуру. Сюда относятся: иммуноглобулины, фермент супероксиддисмутаза.

— В четвертую категорию включены белки, имеющие в своем составе лишь незначительное количество регулярных вторичных структур.

Третичная структура белка – пространственная ориентация полипептидной цепи или способ ее укладки в определенном объеме.

В зависимости от формы третичной структуры различают глобулярные и фибриллярные белки. В глобулярных белках чаще преобладает α-спираль, фибриллярные белки образуются на основе β-структуры.

В стабилизации третичной структуры глобулярного белка могут принимать участие:

— водородные связи спиральной структуры;

— водородные связи β-структуры;

— водородные связи между радикалами боковых цепей;

— гидрофобные взаимодействия между неполярными группами;

— электростатические взаимодействия между противоположно заряженными группами;

— координационные связи ионов металлов.

Четвертичная структура белка – способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или различной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.

Четвертичная структура характерна для белков, состоящих из нескольких субъединиц. Взаимодействие между комплементарными участками субъединиц в четвертичной структуре осуществляется с помощью водородных и ионных связей, ван-дер-ваальсовых сил, гидрофобных взаимодействий. Реже возникают ковалентные связи.

Преимущества субъединичного построения белков по сравнению с одной длинной полипептидной цепью. Во-первых, наличие субъединичной структуры позволяет «экономить» генетический материал. Для олигомерных белков, состоящих из идентичных субъединиц, резко уменьшается размер структурного гена и, соответственно, длина матричной РНК. Во-вторых, при сравнительно небольшой величине цепей уменьшается влияние случайных ошибок, которые могут возникнуть в процессе биосинтеза белковых молекул. Кроме того, возможна дополнительная выбраковка «неправильных», ошибочных полипептидов в процессе ассоциации субъединиц в единый комплекс. В-третьих, наличие субъединичной структуры у многих белков позволяет клетке легко регулировать их активность путем смещения равновесия «ассоциация-диссоциация» в ту или иную сторону.

Читайте так же:  Креатин перед тренировкой или после

Наконец, субъединичная структура облегчает и ускоряет процесс молекулярной эволюции. Мутации, приводящие лишь к небольшим конформационным изменениям на уровне третичной структуры за счет многократного усиления этих изменений при переходе к четвертичной структуре, могут способствовать появлению у белка новых свойств.

Фолдинг белков – процесс сворачивания полипептидной цепи в правильную пространственную структуру. При этом происходит сближение удаленных аминокислотных остатков полипептидной цепи, приводящее к формированию нативной структуры. Эта структура обладает уникальной биологической активностью. Поэтому фолдинг является важной стадией преобразования генетической информации в механизмы функционирования клетки.

Структура и функциональная роль шаперонов в фолдинге белков

В процессе синтеза полипептидных цепей, транспорта их через мембраны, при сборке олигомерных белков возникают промежуточные нестабильные конформации, склонные к агрегации. На вновь синтезированном полипептиде имеется множество гидрофобных радикалов, которые в трёхмерной структуре спрятаны внутри молекулы. Поэтому на время формирования нативной конформации реакционноспособные аминокислотные остатки одних белков должны быть отделены от таких же групп других белков.

Во всех известных организмах от прокариотов до высших эукариотов обнаружены белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии. Они способны стабилизировать их конформацию, обеспечивая фолдинг белков. Эти белки получили название шаперонов.

Не нашли то, что искали? Воспользуйтесь поиском:

ОПРЕДЕЛЕНИЕ ПОСЛЕДОВАТЕЛЬНОСТИ АМИНОКИСЛОТ В ПЕПТИДАХ И БЕЛКАХ

Задачи, на решение которых направлено определение первичной структуры пептидов и белков. Корреляция между структурой и биологической активностью белков.

Общая стратегия определения первичной структуры белков. Основные этапы определения последовательности аминокислот в белках: выделение белка; получение кислотного гидролизата белка и определение мольного соотношение входящих в него аминокислот; определение молярной массы и вычисление количества всех присутствующих аминокислотных остатков; определение количества входящих в молекулу полипептидных цепей; разделение полипептидных цепей и расщепление каждой из них на фрагменты; секвенирование пептидных фрагментов. Метод перекрывающихся блоков и метод неполного гидролиза – основные подходы для восстановления порядка расположения фрагментов в исходной цепи белка.

Определение состава белковых олигомеров: получение мономеров и полипептидных цепей. Методы идентификации олигомеров: электрофорез в полиакриламидном геле, гель-фильтрация. Идентификация индивидуальных полипептидных цепей. Определение состава олигомера по молекулярным массам мономеров. Определение числа мономеров в олигомере путем “сшивания” субъединиц бифункциональными реагентами.

Фрагментация полипептидной цепи ферментативными методами. Гидролиз сериновыми протеазами. Механизм. Использование химических методов для изменения специфичности ферментативного гидролиза.

Фрагментация полипептидов химическими методами. Частичный кислотный гидролиз. Расщепление связи Asp-Pro. N®O-ацильная миграция. Бромциановый метод расщепления по остаткам метионина. Расщепление пептидной связи по остатку триптофана. Окислительное галогенирование. Расщепление с помощью BNPS-скатола. Расщепление о-иодозобензойной кислотой. Расщепление пептидной связи по остатку тирозина. Расщепление с помощью N-бромсукцинимида и N-иодосукцинимида. Расщепление по остатку цистеина. Цианирование с помощью 2-нитро-5-тиоцианобензойной кислоты. Превращение цистеина в дегидроаланин с последующим расщеплением пептидной связи по a-углеродному атому дегидроаланилпептида. Другие методы расщепления пептидных связей. Расщепление связи Asn-Gly гидроксиламином. Расщепление по остатку гистидина под действием N-бромсукцинимида.

Расщепление дисульфидных связей.

Определение аминокислотного состава. Исчерпывающий гидролиз белков для аминокислотного анализа. Колоночная хроматография аминокислот. Постколоночная и предколоночная модификация. Газожидкостная хроматография аминокислот. Этерификация карбоксильных групп и ацилирование других реакционноспособных групп с целью получения летучих производных аминокислот. Определение триптофана в интактном белке. Методы идентификации модифицированных аминокислотных остатков. Анализ фосфорилированных аминокислот и g-карбоксиглутаминовой кислоты. Определение ацетильной и формильной группы. Анализ остатков амидов дикарбоновых кислот.

Идентификация N- и C-концевых аминокислотных остатков. Реагент Сэнгера для определения N-концевой аминокислоты. Дансилирование. Определение С-концевых групп. Селективное введение трития. Гидразинолиз. Определение С-концевых аминокислот путем алкоголиза оксазолов.

Методы анализа аминокислотной последовательности пептидов. Метод Эдмана для секвенирования пептидов. Определение последовательности пептидного фрагмента в ручном варианте. Автоматический анализ аминокислотной последовательности: жидкофазный вариант секвенатора; газофазный вариант секвенатора; твердофазный вариант секвенатора. Методы присоединения пептидов к носителю.

Применение масс-спектрометрии при определении первичной структуры пептидов и белков. Масс-спектрометрческий анализ смеси пептидов, образующихся при специфическом гидролизе белка. Банки данных для последовательностей аминокислот в белках. MS/MS-секвенирование. Особые случаи применения метода. Пептиды с защищенной
N-концевой аминогруппой. Определение N-концевой аминокислотной последовательности. Роль масс-спектрометрии при секвенировании пептидов с модифицированными остатками аминокислот.

Установление первичной структуры белков по кодирующей последовательности в ДНК. Скрининг банков генов. Секвенирование кодирующей последовательности. Сопоставление структуры пептидов с кодирующими последовательностями. Анализ посттрансляционного процессинга методом масс-спектроскопии.

Идентификация и локализация цистинсодержащих пептидов. Расщепление дисульфидных связей. Выделение тиолсодержащих пептидов ковалентной хроматографией. Выделение цистинсодержащих пептидов методом диагонального электрофореза. Идентификация по известной аминокислотной последовательности. Идентификация дисульфидных связей у белков с неизвестной аминокислотной последовательностью.

Видео удалено.
Видео (кликните для воспроизведения).

Дата добавления: 2015-10-12 ; просмотров: 2368 . Нарушение авторских прав

Источники


  1. Айзенстайн Йога питания / Айзенстайн, Чарльз. — М.: София, 2007. — 240 c.

  2. Карман, Т. Аэродинамика. Избранные темы в их историческом развитии / Т. Карман. — М.: [не указано], 2001. — 134 c.

  3. Борис, Мороз und Елена Хромова Бесшовная хирургия в стоматологии у пациентов с сахарным диабетом / Борис Мороз und Елена Хромова. — М.: LAP Lambert Academic Publishing, 2012. — 140 c.
  4. Здоровое питание для малышей. — М.: Machaon, 2005. — 112 c.
Последовательность аминокислот в полипептидной
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here