Превращение аминокислот в тканях

Сегодня предлагаем ознакомится со статьей на тему: превращение аминокислот в тканях с профессиональным описанием и объяснением.

Образование и превращение безазотистого остатка аминокислот в тканях

Большая часть безазотистых остатков аминокислот превращается в пируват либо непосредственно (Ала, Сер), либо в результате более сложного пути, превращаясь вначале в один из метаболитов ЦТК. Затем в реакциях цитратного цикла происходит образование оксалоацетата, который превращается в фосфоенолпируват. Из фосфоенолпирувата под действием пируваткиназы образуется пируват. Пируват подвергается окислительному декарбоксилированию и превращается в ацетил-КоА, который окисляется в ЦТК до СО2 и Н2О с выделением энергии. Такой путь проходят преимущественно аминокислоты пищи.При недостатке глюкозы в организме фосфоенолпируват включается в глюконеогенез (см. раздел 7). Это происходит при голодании, длительной физической работу при сахарном диабете и других тяжёлых хронических заболеваниях, сопровождающихся распадом собственных белков организма. Скорость глюконеогенеза из аминокислот регулируется гормонами. Безазотистые остатки аминокислот используются для восполнения того количества метаболитов общего пути катаболизма, которое затрачивается на синтез биологически активных веществ. Такие реакции называют анаплеротическими.

Пути образования аммиака в организме, его утилизация.

– продукт обмена большинства соединений, содержащих амино- и амидогруппы. Главным путём образования аммиака служит окислительное дезаминирование.

Аммиак – очень токсичное вещество, особенно для нервной системы. При физиологических значениях рН молекула NН3 легко превращается в ион аммония NН4+, который не способен проникать через биологические мембраны и задерживается в клетке.

Конечные продукты обмена белков, процессы в результате которых они образуются, химическая природа, выделение.

Конечные продукты обмена белков. Процессы в результате которых они образуются . хим. Природа. Выделение. Конечными продуктами распада белков в организме являются вода, углекислый газ и азотсодержащие вещества: аммиак, мочевая кислота и др. Аммиак, являющийся для организма вредным веществом, в печени превращается в мочевину, Продукты распада белков, как и других питательных веществ, выводятся из организма наружу через органы выделения.

Образование химическая природа прямого и непрямого билирубина. Количественное определение билирубина в крови. Диагностическое определение билирубина в сыворотке крови при болезни печени и крови.

Билирубин – желто-красный пигмент, продукт распада гемоглобина и некоторых других компонентов крови. Билирубин находится в составе желчи. Анализ билирубина показывает, как работает печень человека, определение билирубина входит в комплекс диагностических процедур при многих заболеваниях желудочно-кишечного тракта. В сыворотке крови встречается билирубин в следующих формах: прямой билирубин и непрямой билирубин. Вместе эти формы образуют общий билирубин крови, определение которого имеет важное значение в лабораторной диагностике.
Нормы общего билирубина: 3,4 — 17,1 мкмоль/л – для взрослых и детей (кроме периода новорожденности) . У новорожденных билирубин высокий всегда — это так называемая физиологическая желтуха.

Норма прямого билирубина: 0 — 3,4 мкмоль/л.

Анализ билирубина может показать отклонение от нормы билирубина. В большинстве случаев изменение уровня билирубина — признак серьезных заболеваний в организме человека.

Повышенный билирубин – симптом следующих нарушений в деятельности организма:

недостаток витамина В 12
острые и хронические заболевания печени
рак печени
гепатит
первичный цирроз печени
токсическое, алкогольное, лекарственное отравление печени
желчнокаменная болезнь.
Если прямой билирубин выше нормы, то для врача эти показатели билирубина – повод поставить следующий диагноз:

острый вирусный или токсический гепатит
инфекционное поражение печени, вызванное цитомегаловирусом, вторичный и третичный сифилис
холецистит
желтуха у беременных
гипотиреоз у новорожденных.
Повышение билирубина может указать на необходимость дополнительного обследования организма.

Дата добавления: 2015-11-23 ; просмотров: 1297 | Нарушение авторских прав

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Обмен аминокислот в тканях

Обмен белков в тканях.

Основная часть аминокислот, которые образуются в кишечнике из белков, поступает в кровь (95%) и небольшая часть — в лимфу. По воротной вене аминокислоты попадают в печень, где расходуются на биосинтез различных специфических белков (альбуминов, глобулинов, фибриногена). Другие аминокислоты током крови разносятся ко всем органам и тканям, транспортируются внутрь клеток, где они используются для биосинтеза белков.

Читайте так же:  Креатин для мышечной массы какой

Неиспользованные аминокислоты окисляются до конечных продуктов обмена. Процесс расщепления тканевых белков катализируется тканевыми ферментами – протеиназами — катепсинами (часто их называют тканевыми протеазами).

Соотношение между аминокислотами в белках, которые распадаются и синтезируются, разное, поэтому часть свободных аминокислот должна быть преобразована в другие аминокислоты или окислена до простых соединений и выведена из организма.

Итак, в организме существует внутриклеточный запас аминокислот, которые в значительной мере пополняется за счет процессов взаимопревращения аминокислот, гидролиза белков, синтеза аминокислот и поступления их из внеклеточной жидкости. В то же время благодаря синтезу белков и другим реакцям (образование мочевины, пуринов и т.п.) постоянно происходит удаление свободных аминокислот из внеклеточной жидкости.

Пути обмена аминокислот в тканях.

В основе различных путей обмена аминокислот лежат три типа реакций: по аминной и карбоксильной группам и по боковой цепи. Реакции по аминной группе включают процессы дезаминирования, переаминирования, аминирования , по карбоксильной группе — декарбоксилирование. Безазотистая часть углеродного скелета аминокислот подвергается различным превращениям с образованием соединений, которые затем могут включаться в цикл Кребса для дальнейшего окисления.

Пути внутриклеточного превращения аминокислот сложны и перекрещиваются со многими другими реакциями обмена, в результате чего промежуточные продукты обмена аминокислот могут служить необходимыми предшественниками для синтеза различных компонентов клеток и быть биологически активными веществами.

Катаболизм аминокислот у млекопитающих (и у человека) происходит, в основном, в печени и немного слабее в почках.

Дезаминирование аминокислот.

Суть дезаминирования заключается в расщеплении аминокислот под действием ферментов на аммиак и безазотистый остаток (жирные кислоты, оксикислоты, кетокислоты). Дезаминирование может идти в виде восстановительного, гидролитического, окислительного и внутримолекулярного процессов. Последние два типа превалируют у человека и животных.

Окислительное дезаминирование подразделяется на две стадии. Первая стадия является ферментативной, она заканчивается образованием неустойчивого промежуточного продукта – иминокислоты (карбоновые кислоты, содержащие иминогруппу (=NH), которая во второй стадии спонтанно в присутствии воды распадается на аммиак и aльфа-кетокислоту. Ферменты, которые катализируют этот процесс, содержат в качестве простетической группы (органические соединение небелковой природы) НАД (никотинамидадениндинуклеотид) или ФАД (флавинадениндинуклеотид).

В организме человека наиболее активно протекает дезаминирование глутаминовой кислоты под действием фермента глутаматдегидрогеназы , которая находится в митохондриях клеток всех тканей. В результате этого процесса образует альфа-кетоглутаровая кислота, которая участвует во многих процессах обмена веществ.

Трансаминирование (переаминирование) аминокислот.

Обязательным условием трансаминирования является участие дикарбоновых аминокислот (глутаминовой и аспарагиновой), которые в виде соответствующих им кетокислот — альфа-кетоглутаровой и щавелевоуксусной могут взаимодействовать со всеми аминокислотами, за исключением лизина, треонина и аргинина.

При переаминировании происходит непосредственный перенос аминогруппы с аминокислоты на кетокислоту, а кетогруппы — с кетокислоты на аминокислоту без освобождения при этом аммиака. Этот процесс протекает в несколько этапов. Реакцию катализируют ферменты, относящиеся к классу трансфераз, их простетической группой является фосфорпиридоксаль-фосфорный эфир витамина В6. Процесс переаминирования широко распространен в живой природе. Его особенность — легкая обратимость.

Реакции переаминирования играют большую роль в обмене веществ. От них зависят такие важнейшие процессы, как биосинтез многих заменимых аминокислот из соответствующих им кетокислот, распад аминокислот, объединение путей углеводного и аминокислотного обмена, когда из продуктов распада глюкозы, например, пировиноградной кислоты, может образоваться аминокислота аланин и наоборот.

Восстановительное аминирование.

Этот процесс противоположен дезаминированию. Он обеспечивает связывание аммиака кетокислотами с образованием соответствующих аминокислот. Восстановительное аминирование катализируется хорошо функционирующей ферментной системой, обеспечивающей аминирование aльфа-кетоглутаровой или щавелевоуксусной кислоты с образованием глутаминовой или аспарагиновой кислоты.

При обезвреживании аммиака неорганическими и органическими кислотами происходит образование аммонийных солей. Этот процесс осуществляется в почках. Образовавшиеся аммонийные соли выводятся из организма с мочой и потом.

Декарбоксилирование аминокислот.

Процесс декарбоксилирования катализируется декарбоксилазами, специфическими для каждой аминокислоты, простетической группой которых служит пиридоксальфосфат. Эти ферменты относятся к классу лиаз. Процесс декарбоксилирования, который заключается в отщеплении от аминокислот СО2 с образованием аминов, можно показать на следующей схеме:

Механизм реакции декарбоксилирования аминокислот согласно общей теории пиридоксалевого катализа сводится к образованию пиридоксальфосфат-субстратного комплекса в активном центре фермента.

Таким путем из триптофана образуется триптамин, из гидрокситриптофана — серотонин. Из аминокислоты гистидина образуется гистамин . Из глутаминовой кислоты при декарбоксилировании образуется гамма-аминомасляная кислота (ГАМК) .

Амины, образованные из аминокислот, называют биогенными аминами, так как они оказывают на организм мощный биологический эффект. Биогенные амины проявляют физиологическое действие в очень малых концентрациях. Так, введение в организм гистамина приводит к расширению капилляров и повышению их проницаемости, сужению крупных сосудов, сокращению гладких мышц различных органов и тканей, повышению секреции соляной кислоты в желудке. Кроме того, гистамин участвует в передаче нервного возбуждения.

Читайте так же:  Л карнитин и хром для похудения

Серотонин способствует повышению кровяного давления и сужению бронхов; его малые дозы подавляют активность центральной нервной системы, в больших дозах это вещество оказывает стимулирующее действие. В различных тканях организма большие количества гистамина и серотонина находятся в связанной, неактивной форме. Биологическое действие они проявляют только в свободной форме.

Гамма-аминомасляная кислота (ГАМК) накапливается в мозговой ткани и представляет собой нейрогуморальный ингибитор-медиатор торможения центральной нервной системы.

Большие концентрации этих соединений могут представлять угрозу для нормального функционирования организма. Однако в животных тканях имеется аминоксидаза , расщепляющая амины до соответствующих альдегидов, которые потом превращаются в жирные кислоты и распадаются до конечных продуктов.

«Обмен аминокислот в тканях» — это третья статья из цикла «Обмен белков в организме человека». Первая статья – « Расщепление белков в пищеварительном тракте ». Вторая статья « Обезвреживание продуктов гниения белков в кишечнике ».

Общие пути катаболизма аминокислот в тканях.

Тема 2. ОБЩИЕ ПУТИ КАТАБОЛИЗМА АМИНОКИСЛОТ. ОБРАЗОВАНИЕ АММИАКА В ОРГАНИЗМЕ И ПУТИ ЕГО ОБЕЗВРЕЖИВАНИЯ

Практическая значимость темы. Для большинства аминокислот характерны общие реакции, связанные с превращениями их амино- и карбоксильных групп — реакции трансаминирования, дезаминирования и декарбоксилирования. Роль этих превращений в организме велика, так как перечисленные типы реакций обеспечивают интеграцию аминокислотного обмена с метаболизмом углеводов и липидов, способствуют перераспределению азота в организме, участвуют в образовании биомолекул, способных регулировать обмен веществ и ряд физиологических процессов.

Аммиак, образующийся в организме человека в реакциях катаболизма азотсодержащих соединений, чрезвычайно токсичен и должен быть обезврежен путём превращения его в мочевину. Поэтому согласованное протекание метаболического превращения аммиака в мочевину имеет важное значение для сохранения здоровья. Понимание патогенеза расстройств, возникающих при заболеваниях печени (гепатит, цирроз) и врождённых дефектах ферментов цикла мочевинообразования, лечение больных, страдающих этими заболеваниями, требуют знания механизмов обезвреживания аммиака в тканях.

Цель занятия. После изучения данной темы студент должен знать общие пути катаболизма аминокислот в тканях и их биологическую роль, основные источники образования аммиака и пути его обезвреживания в организме, их регуляцию, возможные причины нарушений, уметь применять приобретённые знания для решения теоретических и практических задач.

Исходный уровень знаний.

  1. Строение аминокислот (аланин, аспартат, аспарагин, аргинин, глутамат, глутамин, гистидин, тирозин, триптофан, цистеин).
  2. Кислотно-основные свойства органических соединений.
  3. Высокоэнергетические фосфатные соединения: роль в организме.
  4. Цикл трикарбоновых кислот: реакции, роль в организме.
  5. Принципы диагностики врождённых дефектов ферментов.

Общие пути катаболизма аминокислот в тканях.

К общим путям катаболизма аминокислот относятся реакции трансаминирования, дезаминирования и декарбоксилирования.

2.1.1. Трансаминирование аминокислот – перенос аминогруппы (NН2-) от аминокислоты на α-кетокислоту без промежуточного образования аммиака. Реакции трансаминирования катализируют ферменты – аминотрансферазы (или трансаминазы). Кофермент аминотрансфераз – пиридоксальфосфат (производное витамина В6). В реакции принимает участие альдегидная группа кофермента. Реакция легко обратима. Механизм реакции трансаминирования представлен на рисунке 2.1.

Рисунок 2.1. Механизм переноса аминогруппы с аминокислоты на α-кетокислоту в реакции трансаминирования.

Примеры реакций трансаминирования:

Роль реакций трансаминирования в организме:

  • участие в непрямом дезаминировании аминокислот;
  • путь синтеза заменимых аминокислот;
  • образующиеся в реакции α-кетокислоты могут включаться в общий путь катаболизма и глюконеогенез.

2.1.2.Дезаминирование аминокислот – отщепление аминогруппы от аминокислоты с образованием аммиака (NН3). В тканях человека преобладает окислительное дезаминирование, то есть сопряжённое с переносом водорода.

Большинство ферментов, участвующих в окислительном дезаминировании аминокислот, при физиологических значениях рН малоактивны. Поэтому основная роль в окислительном дезаминировании принадлежит глутаматдегидрогеназе, которая катализирует прямое окислительное дезаминирование глутамата. В качестве кофермента используются НАД + или НАДФ + (производные витамина РР). Реакция обратима.

Глутаматдегидрогеназа – аллостерический фермент, его аллостерическими активаторами являются АДФ и ГДФ, аллостерическими ингибиторами – АТФ, ГТФ и НАДН.

Непрямое дезаминирование

характерно для большинства аминокислот. Оно называется непрямым, потому что происходит в 2 этапа:

  1. на первом этапе аминокислота подвергается трансаминированию с образованием глутамата;
  2. на втором этапе происходит окислительное дезаминирование глутамата (см. рисунок 4).

Рисунок 2.2. Схема непрямого дезаминирования аминокислот.

Участие аминотрансфераз в этом процессе позволяет собрать аминогруппы различных аминокислот в составе одной аминокислоты – глутамата, который затем подвергается окислению с образованием аммиака и α-кетоглутарата.

Читайте так же:  После креатина часто хожу в туалет

2.1.3. Декарбоксилирование аминокислот – отщепление карбоксильной группы от аминокислоты с образованием СО2. Продуктами реакций декарбоксилирования аминокислот являются биогенные амины, участвующие в регуляции обмена веществ и физиологических процессов в организме (см. таблицу 2.1).

Таблица 2.1

Биогенные амины и их предшественники.

Аминокислота Биогенный амин
Гистидин Гистамин
Глутамат γ-аминомасляная кислота (ГАМК)
Тирозин Дофамин
Триптофан Триптамин
Серотонин
Цистеин Тиоэтиламин
Таурин

Реакции декарбоксилирования аминокислот и их производных катализируют декарбоксилазы аминокислот. Кофермент – пиридоксальфосфат (производное витамина В6). Реакции являются необратимыми.

2.1.3.1. Примеры реакций декарбоксилирования. Некоторые аминокислоты непосредственно подвергаются декарбоксилированию:

Гистамин обладает мощным сосудорасширяющим действием, особенно капилляров в очаге воспаления; стимулирует желудочную секрецию как пепсина, так и соляной кислоты, и используется для исследования секреторной функции желудка.

ГАМК – тормозный медиатор в центральной нервной системе.

Ряд аминокислот подвергается декарбоксилированию после предварительного окисления.

Серотонин образуется главным образом в клетках центральной нервной системы, обладает сосудосуживающим действием. Участвует в регуляции артериального давления, температуры тела, дыхания, почечной фильтрации.

Дофамин служит предшественником катехоламинов; является медиатором ингибирующего типа в центральной нервной системе.

Таурин образуется главным образом в печени; участвует в синтезе парных желчных кислот (таурохолевой кислоты).

2.1.3.2. Катаболизм биогенных аминов. В органах и тканях существуют специальные механизмы, предупреждающие накопление биогенных аминов. Основной путь инактивации биогенных аминов – окислительное дезаминирование с образованием аммиака – катализируется моно- и диаминооксидазами.

Моноаминооксидаза (МАО) — ФАД-содержащий фермент – осуществляет реакцию:

В клинике используются ингибиторы МАО (ниаламид, пиразидол) для лечения депрессивных состояний.

Превращение аминокислот в тканях

Аминокислоты — основной источник азота для организма млекопитающих. Они являются связующим звеном между процессами синтеза и распада азотсодержащих веществ, в первую очередь белков.
В клетках постоянно поддерживается определенный стационарный уровень аминокислот — фонд (пул) свободных аминокислот. Этот фонд обновляется за счет поступления аминокислот и используется для синтеза биологически важных химических компонентов клетки.
Пути поступления свободных аминокислот, образующих аминокислотный фонд в клетке:

1. Транспорт аминокислот из внеклеточной жидкости — транспортируются аминокислоты, которые всасываются в кишечнике после гидролиза пищевых белков.

2. Синтез заменимых аминокислот — в клетке из промежуточных продуктов окисления глюкозы и цикла лимонной кислоты могут синтезироваться аминокислоты.

К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, глицин, серин.

3. Внутриклеточный гидролиз белков — это основной путь поступления аминокислот. Гидролитическое расщеп–ление тканевых белков катализируют лизосомальные протеазы. При голодании, онкологических и инфекцион–ных заболеваниях этот процесс усиливается. Т. Е : когда не хватает аминокислот, организм разрушает свои структуры клетки для восполнения этого запаса

Пути использования аминокислотного фонда:

1) Синтез белков и пептидов — это основной путь потребления аминокислот — 75-80% аминокислот клетки идет на их синтез.

2) Синтез небелковых азотсодержащих соединений:

[2]

— пуриновых и пиримидиновых нуклеотидов;

— некоторых витаминов и коферментов (НАД, КоА, фолиевая кислота);

— биогенных аминов (гистамин, серотонин);

— гормонов (адреналин, тироксин, трийодтиронин);

— медиаторов (норадреналин, ацетилхолин, ГАМК).

3) Синтез глюкозы с использованием углеродных скелетов гликогенных аминокислот (глюконеогенез).

4) Синтез липидов с использованием ацетильных остатков углеродных скелетов кетогенных аминокислот.

Видео удалено.
Видео (кликните для воспроизведения).

5) Окисление до конечных продуктов обмена (СО2, Н2О, NH3) — это один из путей обеспечения клетки энергией — до 10% общих энергетических потребностей. Все аминокислоты, которые не используются в синтезе белков и других физиологически важных cоединений, подвергаются расщеплению.

Существую общие и специфические пути метаболизма аминокислот. К общим путям катаболизма аминокислот относятся:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9117 —

| 7229 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Общие пути обмена аминокислот.

Пути распада аминокислот до конечных продуктов можно разделить на 3 группы:

Пути распада, связанные с превращением NH2-групп.

Декарбоксилирование -СООН групп.

Превращения углеродного скелета аминокислот.

Превращение -аминогрупп аминокислот.

В тканях организма происходит отщепление аминогрупп с образованием аммиака. Этот процесс называется дезаминированием. Возможны 4 типа дезаминирования:

Читайте так же:  Креатин аминокислоты как принимать

R-CH-COOH R-CH2-COOH + NH3

R-CH-COOH R-CH-COOH + NH3

R-CH2-CH-COOH R-CH=CH-COOH + NH3

R-CH-COOH R-C-COOH + NH3

Окислительное дезаминирование бывает 2 видов: прямое и непрямое (трансдезаминирование).

Прямое окислительное дезаминирование осуществляется оксидазами. В качестве кофермента содержат ФМН или ФАД. Продуктами

реакции являются кетокислоты и аммиак.

Трансдезаминирование – основной путь дезаминирования аминокислот. Трансдезаминирование проходит в 2 этапа.

Первый – трансаминирование – перенос аминогруппы с любой аминокислоты на -кетокислоту без промежуточного образования аммиака;

Второй – собственно окислительное дезаминирование.

В результате первого этапа аминогруппы «собираются» в составе глутаминовой кислоты. Второй этап связан с окислительным дезаминированием глутаминовой кислоты.

[3]

Трансаминирование аминокислот было открыто советскими учеными Браунштейном и Крицман (1937г).

HC-NH2 + C=O C=O + HC-NH2

COOH COOH COOH COOH

Реакция трансаминирования обратима, она катализируется ферментами – аминотрансферазами.

Акцептором аминогрупп в реакциях трансаминирования являются три — кетокислоты: пируват, оксалоацетат, 2-оксоглутарат. Наиболее часто акцептором NH2-групп служит 2-оксоглутарат (-кетоглутарат), реакция приводит к образованию глутаминовой кислоты:

СН3 COOH CH3 COOH

НСNH2 + CH2 C=O + (CH2)2

COOH CH2 COOH CHNH2

Аминотрансферазы содержат в качестве кофермента производные пиридоксина (витамин В6) – пиридоксаль-фосфат и пиридоксамин-фосфат.

(Механизм реакции трансаминирования с участием пиридоксальфосфата – учебник.)

Окислительное дезаминирование глутаминовой кислоты.

Биологический смысл реакций трансаминирования состоит в том, чтобы собрать аминогрупы всех распадающихся аминокислот в составе одной аминокислоты – глутаминовой. Глутаминовая кислота поступает в митохондрии клеток, где происходит второй этап трансдезаминирования – собственно дезаминирование глутаминовой кислоты. Реакция катализируется глутаматдегидрогеназой, которая в качестве кофермента содержит НАД+ или НАДФ+.

(

CH2)2 (CH2)2

CHNH2 НАД НАДН+Н+ C=O

Клиническое значение определения активности трансаминаз.

Для клинических целей определяют активность АлТ и АсТ, которые катализируют следующие реакции:

Аспартат + -кетоглутаратоксалоацетат + глутамат

Аланин + -кетоглутарат пируват + глутамат

В сыворотке крови здоровых людей активность этих трансаминаз ниже, чем в органах. При поражении органов наблюдается выход трансаминаз из очага поражения в кровь. Так, при инфаркте миокарда уровень АсТ сыворотки крови уже через 3-5 ч после наступления инфаркта повышается в 20-30 раз. При гепатитах повышается более умеренное и затяжное.

Процесс отщепление карбоксильной группы в виде СО2 называется декарбоксилированием и приводит к образованию биогенных аминов, которые оказывают фармакологическое действие на физиологические функции человека.

Серотонин обладает сосудосуживающим действием, участвует в регуляции артериального давления, t тела, дыхания, медиатор нервных процессов.

Дофамин- предшественник катехоламинов.

Гистамин обладает сосудорасширяющим действием. Он образуется в области воспаления, участвует в развитии аллергических реакций.

НООС-(СН2)2-СН-СООН СН2-СН2-СН2-СООН

глутамат NH2 NH2 -аминомасляная кислота (ГАМК)

ГАМК является тормозным медиатором. В лечебной практике используется при лечении эпилепсии (резкое сокращение частоты припадков).

Орнитин декарбоксилируясь дает диамин – путресцин, а лизин – кадаверин.

СН2-СН2-СН2-СН-СООНСН2-СН2-СН2-СН2-NH2;

CH2-CH2-CH2-CH2-CH-COOHСН2-СН2-СН2-СН2-CH2-NH2

В организме биогенные амины подвергаются реакции окислительного дезаминирования с образованием альдегидов и аммиака. Процесс осуществляется при участии моноаминооксидаз.

Схематически механизм трансдезаминирования можно представит так:

Пути превращения аминокислот в печени.

Включение углеродных скелетов аминокислот в цикл лимонной кислоты.

ПРЕВРАЩЕНИЯ АМИНОКИСЛОТ В ТКАНЯХ

Аминокислоты, поступившие в ткани, используются для синтеза собственных белков организма, ферментов, нуклеиновых кислот, белковых и пептидных гормонов, витаминов, пигментов и других соединений.

Только 10-25% аминокислот организма подвергается окислению. Превращения углеводородного остова аминокислот приводит к соединениям, которые далее включаются в цикл Кребса в различных его местах и подвергаются там дальнейшему окислению. Энергетический баланс расщепления аминокислот до углекислого газа и воды через ЦТК довольно значительный, так при расщеплении 1 молекулы аминокислоты треонина синтезируется 27 АТФ.

Энергетическому окислению аминокислот в тканях предшествуют 3 основных вида превращений: 1. окислительное дезаминирование; 2 трансаминирование; 3. декарбоксилирование.

Окислительное дезаминирование аминокислот идет путем дегидрирования и катализируется ферментами дегидрогеназами с коферментом НАД или ФМН, в состав которых входят витамин РР (никотинамид) или В2 (рибофлавин), с образованием аммиака и кетокислот:

Аммиак

Читайте также:
  1. L-Аминокислоты ОРГАНИЗМА
  2. Аллотропия или полиморфные превращения.
  3. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ
  4. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ. ПЕПТИДЫ.
  5. АМИНОКИСЛОТЫ
  6. Аминокислоты, пептиды и белки.
  7. Биоэлектрические явления в живых тканях

яд, он обезвреживается путем превращения его в печени в безвредную мочевину, которая через почки удаляется с мочой (см. п.8.1.4.).

Кетокислоты

: 1. подвергаются окислительному декарбоксилированию до жирных кислот, которые далее окисляются до углекислого газа и воды; 2. участвуют в синтезе заменимых аминокислот путем реакции трансаминирования; 3.идут на восстановительное аминирование; 4. поступают в ЦТК.

Трансаминирование —это основной путь превращений аминокислот в тканях, представляющий собой обратимый перенос аминогрупп и кетогрупп между аминокислотой и кетокислотой. Реакция катализируется аминотрансферазами, коферментом которых является витамин В6 (пиридоксин). Эта реакция – основной путь синтеза заменимых аминокислот в организме:

Читайте так же:  Витамин д для взрослых

Декарбоксилирование аминокислот катализируется ферментами декарбоксилазами аминокислот, коферментом которых является витамин В6, как и у трансаминаз с образованием аминов:

Образующиеся амины названы биогенными, так как обладают сильным фармакологическим действием на множество физиологических функций человека и животных. Например, гистамин, образующийся из гистидина, расширяет сосуды, вызывает секрецию соляной кислоты желудочного сока, является проводником боли.

Дата добавления: 2015-07-15 ; просмотров: 415 | Нарушение авторских прав

Превращение аминокислот в тканях

На сайте используется два типа cookies:

Основным является сессионный cookie, обычно называемый MoodleSession. Вы должны разрешить использование этого файла cookie в своем браузере, чтобы обеспечить непрерывность и оставаться в системе при просмотре сайта. Когда вы выходите из системы или закрываете браузер, этот файл cookie уничтожается (в вашем браузере и на сервере).

Другой файл cookie предназначен исключительно для удобства, его обычно называют MOODLEID или аналогичным. Он просто запоминает ваше имя пользователя в браузере. Это означает, что когда вы возвращаетесь на этот сайт, поле имени пользователя на странице входа в систему уже заполнено для вас. Отказ от этого файла cookie безопасен — вам нужно будет просто вводить свое имя пользователя при каждом входе в систему.

Некоторые курсы, возможно, открыты для гостей

Специфические пути превращения аминокислот.

Наряду с общими процессами распада аминокислот, каждая из них подвергается и специфическим превращениям:

1. Глицин – участвует в синтезе креатинина, серина, гемоглобина, пуриновых оснований, сиаловых и парных желчных кислот. Принимает участие в обезвреживании ядовитых веществ в организме.

2. При дезаминировании аланина образуется пировиноградная кислота, которая используется для синтеза глюкозы или ацетил-КоА с образованием энергии.

3. Серин является исходным веществом для синтеза 3-фосфоглицериновой кислоты, этаноламина, ПВК, цистеина.

4. Метионин поставляет метильную группу для синтеза холина, тимина, адреналина, креатина и др.

5. Цистеин участвует в образовании дисудьфидных мостиков в третичной структуре белка, в синтезе таурина (необходим для синтеза желчных кислот) и серной кислоты (участвует в обезвреживании ядов в печени).

6. Глутаминовая и аспарагиновая кислоты участвуют в биосинтезе мочевины, пуриновых и пиримидиновых азотистых оснований, в виде своих производных альфа-кетоглутаровой и щавелевой кислот участвуют в цикле Кребса.

7. Аргинин участвует в биосинтезе мочевины и креатина.

8. Фенилаланин является предшественником тирозина, который в свою очередь служит исходным веществом для синтеза гормонов (адреналина, тироксина и др.), пигментов (меланинов), биогенных аминов (тирамин).

9. Триптофан распадается с образованием никотиновой кислоты или серотонина.

10. Гистидин участвует в биосинтезе глобина, а при распаде образует глутаминовую кислоту и гистамин.

Большое значение в организме для мышечного сокращения играет креатин. Он синтезируется из аргинина, глицина и метионина. В мышцах при участии АТФ образуется креатинфосфат – макроэргическое соединение, обеспечивающее энергией процесс мышечного сокращения. При его распаде выделяется большое количество энергии и образуется креатинин, который весь выводится почками.

Аргинин В мышцы + АТФ

Глицин креатин Креатин-фосфат Креатинин + Энергия

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9560 —

| 7557 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Видео удалено.
Видео (кликните для воспроизведения).

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источники


  1. Рунова, М. А. Дифференцированные занятия по физической культуре с детьми 5-7 лет / М.А. Рунова. — М.: Просвещение, 2017. — 144 c.

  2. Диетология; Питер — Москва, 2012. — 471 c.

  3. Маршак, М.С. Диетическое питание / М.С. Маршак. — М.: Медицина, 1990. — 484 c.
  4. Рагимов, Алигейдар Агаалекперович Искусственное лечебное питание в многопрофильном хирургическом стационаре. Руководство / Рагимов Алигейдар Агаалекперович. — М.: ГЭОТАР-Медиа, 2015. — 669 c.
Превращение аминокислот в тканях
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here