Присоединение аминокислоты к трнк

Сегодня предлагаем ознакомится со статьей на тему: присоединение аминокислоты к трнк с профессиональным описанием и объяснением.

Транспортные РНК

Установлена первичная структура почти всех 60 открытых тРНК (рис. 14.4). Знание последовательности нуклеотидов и, следовательно, состава тРНК дало в руки исследователей много ценных сведений о биологической роли отдельных компонентов тРНК. Общей для тРНК оказалась также нативная трехмерная структура, установленная методом рентгенокристаллографического анализа и названная первоначально кон-формацией клеверного листа; на самом деле эта конформация имеет перевернутую L-образную форму (см. рис. 14.3). Определение тРНК этим методом позволило выявить ряд отличительных особенностей структуры. В молекуле тРНК открыты спирализованные участки, необычные водородные связи и гидрофобные взаимодействия во внеспирализованных участках. Показано, что тРНК имеет псевдоуридиловую петлю, образованную из нуклеотидов, содержащих псевдоуридин (ТψС), и дигидро-уридиловую петлю. Обе петли участвуют в образовании угла буквы L. На 3′-ОН-конце располагается одинаковая для всех тРНК последовательность триплета ЦЦА-ОН, к которой присоединяется посредством эфирной связи специфическая аминокислота. Связывание в основном происходит через 3′-ОН-группу концевого аденилового нуклеотида, хотя, как было указано, получены доказательства возможности предварительного присоединения аминокислоты и через его 2′-ОН-группу.

Роль отдельных участков тРНК недостаточно раскрыта. В частности, псевдоуридиловая петля, по-видимому, обеспечивает связывание амино-ацил-тРНК с рибосомой, а дигидроуридиловая петля, вероятнее всего, необходима как сайт (место) для узнавания специфическим ферментом – аминоацил-тРНК-синтетазой. Имеется, кроме того, добавочная петля, состав которой варьирует у разных типов молекул тРНК; ее назначение неизвестно. Существенным, с полностью раскрытой функцией участком является антикодоновая петля, несущая триплет, названный антикодо-ном, и расположенная на противоположной стороне от того конца, к которому присоединяется аминокислота. Антикодоновая петля состоит из 7 нуклеотидов: три занимают центральное положение и формируют собственный высокоспецифичный антикодон, по два нуклеотида расположены по обе стороны от него, включая модифицированный пурин и варьирующее основание с одной стороны и два пиримидиновых основания – с другой стороны. Антикодон является специфичным и комплементарным к соответствующему кодону мРНК, причем оба они анти-параллельны в своей комплементарности.

[1]

Тщательный анализ нуклеотидной последовательности разных тРНК показал, что все они содержат одинаковый 5′-концевой нуклеотид – ГМФ – со свободной 5′-фосфатной группой. Адапторная функция молекул тРНК заключается в связывании каждой молекулы тРНК со своей специфической аминокислотой. Однако, поскольку между нуклеиновой кислотой и специфической функциональной группой аминокислот нет соответствия и сродства, эту функцию узнавания, точнее, посредника между тРНК и аминокислотой, должна выполнять белковая молекула фермента. Взаимодействие между аминоацил-тРНК-синтетазой и тРНК принято обозначать как «вторичный генетический код», подчеркивая тем самым его ключевую роль в обеспечении точности синтеза белка, причем правила кодирования являются, вероятнее всего, более сложными, чем правила «первичного» генетического кода (см. далее).

ТРАНСПОРТНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ

ТРАНСПОРТНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (тРНК, трансферные РНК, адапторные РНК), низкомолекулярные РНК, осуществляющие перенос аминокислотных остатков к матричной РНК (мРНК) при трансляции (синтезе полипептидяой цепи на мРНК-матрице в рибосомах).

Присутствуют в цитоплазме и митохондриях. Цитоплаз-матич. тРНК состоят из одной полирибонуклеотидной цепи, включающей 74-95 нуклеотидных остатков (мол. м. 24-31 тыс.), митохондриальные тРНК немного короче. Для всех молекул тРНК характерно присутствие остатка фосфорной к-ты на 5′-конце (см. Нуклеиновые кислоты) нуклеотидной цепи (фосфорилирован 5′-гидроксил), наличие последовательности ССА—ОН (С-остаток цитидина, А-аденозина) на 3′-конце и неск. консервативных нуклеотидных остатков, рассеянных вдоль цепи и занимающих во всех тРНК одни и те же положения.

Отличит. особенность тРНК-присутствие в молекуле минорных нуклеозидов (миноров), общее число разновидностей к-рых в разных тРНК св. 50, а в одной молекуле тРНК их доля может достигать 25%. Они образуются путем метилирования, гидрирования и др. превращений обычных нуклеотидных звеньев в ходе посттранскрипц. модификации тРНК под действием соответствующих ферментов. Большинство миноров влияет на стабильность пространственной структуры и(или) на адапторную ф-цию тРНК-способность каждой тРНК узнавать свой кодон (участок мРНК из трех нуклеотидных остатков, кодирующий определенную аминокислоту; см. Генетический код). На присоединение к тРНК аминокислот (акцепторную ф-цию) миноры, как правило, не влияют.

Более половины пуриновых и пиримидиновых оснований тРНК с помощью водородных связей образуют внутрицепо-чечные пары по принципу комплементарности (A-U, G-C, G-U; U и G-соотв. остатки уридина и гуанозина), формируя 4 двухспиральных участка. Эти короткие спирали чередуются с участками неспаренных оснований, в результате чего нуклеотидная цепь образует 3 петли. Таким образом формируется вторичная структура, получившая назв. клеверного листа (см. рис.). В ней выделяют: акцепторную ветвь (стебель, черешок) с универсальной 3′-концевой последовательностью, служащей акцептором (местом прикрепления) остатка аминокислоты; дигидроуридиловую ветвь (шпильку), варьирующую по числу входящих в ее состав нуклеотидов и содержащую до 3 остатков дигидро-уридина (DHU); антикодоновую ветвь (шпильку) с петлей в 7 нуклеотидных остатков, в центре к-рой находится анти-кодон (тринуклеотид, комплементарный кодону мРНК и обусловливающий специфичность тРНК к этому кодону); тимидилпсевдоуридиловую ветвь, или T y -шпильку, содержащую минорные нуклеозиды риботимидин и псевдоури-дин.

Кроме того, у всех тРНК между T y -шпилькой и акцепторным стеблем имеется вариабельная петля (V-петля). Число составляющих ее нуклеотидов у разл. тРНК варьирует от 3 до 20. Если петля длинная, то формируется дополнит. пятый двухспиральный участок тРНК, как, напр., у дрожжевых тРНК Ser и тРНК Leu (в верхнем индексе-условные обозначения аминокислот, к к-рым специфичны данные тРНК; букв. обозначения см. в ст. Аминокислоты).

Нуклеотидная последовательность и вторичная структура дрожжевой алани-новой тРНК; линии между антипараллельными участками обозначают водородные связи между комплементарными парами оснований (р-остаток фосфорной к-ты); молекула содержит семь минорных нуклеозидов: y -псевдо-уридин, 1-инозин, Т-риботимидин. DHU-5,6-дигидроуридин, m 1 I-1-метили-нозин, m 1 G-1-метилгуанозин, m 2 G-N 2 -диметилгуанозин: 1-акцепторная ветвь, 2-Т y -шпилька, S-V-петля, 4-антикодонная ветвь, 5-дигидроуриди-ловая ветвь.

Все тРНК имеют сходную пространственную укладку цепи, напоминающую лат. букву L. Акцепторная и тими-дилпсевдоуридиловая ветви расположены по одной оси, формируя непрерывную двойную спираль, состоящую из 12 пар нуклеотидных остатков; антикодоновая и дигидроури-диловая ветви располагаются также по одной оси, формируя вторую двойную спираль, включающую 9 пар нуклеотидных остатков. Эти два спиральных участка располагаются под углом ок. 90° друг к другу. Трехмерная структура поддерживается нековалентными связями между T y — и DHU-шпильками, а также др. взаимод., в т.ч. с ионами Mg 2+ . Конформация тРНК в р-ре в целом соответствует ее конформации в кристалле. Важная особенность структуры тРНК заключается в том, что антикодон, находящийся в центре полинуклеотидной цепи и на одном из концов «L», доступен для контактов с мРНК.

В присут. АТФ, ионов Mg 2+ и аминоацил-тРНК-синтетаз к группе 3′-ОН 3′-концевого аденозина тРНК присоединяется остаток аминокислоты с образованием аминоацил-тРНК. Аминоацил-тРНК в рибосоме с помощью антико-дона комплементарно связывается с соответствующим ко-доном мРНК. тРНК, акцептирующие разл. аминокислоты, имеют разные последовательности оснований, благодаря чему синтетазы легко их узнают. Через взаимод. кодон-антикодон осуществляется перевод нуклеотидной последовательности мРНК в специфич. аминокислотную Последовательность синтезируемой полипептидной цепи.

Читайте так же:  Сколько креатина надо пить

Ошибка в узнавании аминокислоты своей тРНК при синтезе аминоацил-тРНК не может быть исправлена на последующих этапах белкового синтеза; последовательность аминокислотных остатков в синтезируемой полипептидной цепи определяется мРНК и аминоацил-тРНК, взаимодействующими в рибосоме, а не природой аминокислотного остатка, связанного с тРНК. Для большинства тРНК с короткой V-петлей важную роль при взаимном узнавании фермента и тРНК играет антикодон, для тРНК с длинной V-петлей-двухспиральные участки. При узнавании происходят взаимные конформац. изменения тРНК и фермента.

Как правило, каждая аминокислота имеет неск. соответствующих ей разновидностей тРНК, незначительно различающихся по первичной структуре и наз. изоакцептор-ными; их подразделяют на мажорные (доминирующие) и минорные (малочисленные). Структурные различия обусловлены заменами неск. нуклеотидов (или пар нуклео-тидов) в разл. частях молекулы (в т.ч. в антикодоне) и существенно не отражаются на укладке цепей. Для считывания разных кодонов мРНК, соответствующих одной и той же аминокислоте, используются изоакцепторные тРНК с разными антикодонами. Для мн. аминокислот число соответствующих им изоакцепторных тРНК с разными антикодонами гораздо меньше, чем общее число кодонов (напр., 24 митохондриальных тРНК достаточно для узнавания 61-62 смысловых кодонов мРНК). Из этого следует, что одна и та же тРНК может узнавать неск. кодонов, кодирующих одну и ту же аминокислоту, но различающихся по одному нуклеотиду.

Число генов, кодирующих тРНК для одной и той же аминокислоты, может различаться у разных организмов более чем на порядок. Общее число генов тРНК в разл. организмах сильно варьирует (напр., у кишечной палочки Escherichia coli их ок. 70, у шпорцевой лягушки Xenopus laevis ок. 7 тыс., у человека св. 1 тыс.). При транскрипции (синтез РНК на ДНК-матрице) генов тРНК с помощью фермента РНК-полимеразы III образуются предшественники тРНК (пре-тРНК). Дальнейшее их превращение в тРНК включает ряд ферментативных р-ций, приводящих к уменьшению размеров молекул и модификации нек-рых нуклеозидов. В-генах тРНК эукариот функционально важный 3′-концевой триплет не кодирован-он достраивается посттранскрипционно с помощью фермента тРНК-нуклео-тидилтрансферазы.

Помимо акцепторно-адапторной ф-ции в белковом синтезе, мн. тРНК выполняют роль затравки при обратной транскрипции (синтезе ДНК на РНК-матрице) благодаря комплементарности 3′-конца тРНК (17-20 нуклеотидов) и участка РНК ретровирусов, а также др. ретротранспозонов. На 3′-концах РНК мн. вирусов растений присутствуют тРНК-подобные структуры, обладающие акцепторной активностью. Нек-рые тРНК участвуют в биосинтезе пеп-тидогликанов (компонентов внеш. оболочки нек-рых бактерий), в переносе аминокислот через внеш. мембрану клеток, в регуляции биосинтеза ряда аминокислот, в посттрансляционной модификации белков (перенос аминокислотного остатка от аминоацил-тРНК на N-конец полипептидной цепи под действием ферментов аминоацил-тРНК-протеин трансфераз), а также во внутриклеточной деградации белков. Имеются данные об участии тРНК как кофактора в р-ции восстановления глутаминовой к-ты при биосинтезе хлорофилла. Успехи в изучении структуры и функции тРНК сыграли исключит. роль в понимании общих принципов структурной организации нуклеиновых к-т, в познании биосинтеза белков.

В 1955 Ф. Крик предсказал существование в клетках малых молекул, ковалентно связывающихся с помощью особых ферментов с аминокислотами и участвующих в адаптации (приспособлении) аминокислот к генетич. коду, записанному в нуклеотидной форме (т. наз. адапторная ги потеза). Такими молекулами оказались тРНК и «рН5-фер-менты», названные позднее аминоацил-тРНК-синтетазами. тРНК открыли в 1957 М. Хоглэнд, М. Стефенсон и П. Замеч-ник (США) и одновременно К. Огата и X. Нохара (Япония).

Впервые нуклеотидную последовательность тРНК установили в 1965 Р. Холли с сотрудниками (США) для дрожжевой тРНК Аlа . За последующие 25 лет была расшифрована первичная структура сотен тРНК из разл. организмов (бактерии, дрожжи, млекопитающие и др.). В 1974 А. Рич с сотрудниками (США) и А. Клуг с сотрудниками (Великобритания) впервые с помощью рентгеноструктурного анализа установили трехмерную структуру дрожжевой тРНК Рhе в кристалле. Позже трехмерные структуры нек-рых др. тРНК были расшифрованы в др. лабораториях.

тРНК-первые нуклеиновые к-ты, для к-рых была установлена сначала первичная, а затем трехмерная структура их молекул, что имело принципиальное значение для развития мол. биологии, химии прир. соединений и биоорг. химии.

Транспортная РНК

70-90Н | вторичная стр-ра- клеверный лист | CCA 3′ const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле — защита от рибонуклеаз ? долгоживущие | Разнообразие первичных структур tРНК — 61+1 — по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур — 20 (по кол-ву аминокислот) | рекогниция — образование ковалентной связи м-у tРНК и актой | аминоацил-тРНК-синтетазы присоединяют акты к тРНК

Функция тРНК заключается в переносе аминокислот из цитоплазмы в рибосомы, в которых происходит синтез белков.
тРНК связывающие одну аминокислоту называются изоакцепторными.
Всего в клетке одновременно существует 64 различных тРНК.
Каждая тРНК спаривается только со своим кодоном.
Каждая тРНК распознает свой собственный кодон без участия аминокислоты. Связавшиеся с тРНК аминокислоты химически модифицировали, после чего анализировали получившийся полипептид, который содержал модифицированную аминокислоту. Цистеинил-тРНКCys (R=CH2-SH) восстанавливали до аланил-тРНКCys (R=CH3).
Большинство тРНК, не зависимо от их нуклеотидной последовательности, имеют вторичную структуру в форме клеверного листа из-за наличия в ней трех шпилек.

Особенности структуры тРНК

Третичная структура тРНК

Присоединение аминокислот к тРНК

70-90н | вторичная стр-ра- клеверный лист | CCA 3′ const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле — защита от рибонуклеаз ? долгоживущие | Разнообразие первичных структур tРНК — 61+1 — по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур — 20 (по кол-ву аминокислот)

Имеются два вида тРНК связывающие метионин тРНКFMet и тРНКMMet у прокариот и, тРНКIMetи тРНКMMet — у эукариот. К каждой тРНК добавляется метионин с помощью соответствующих аминоацил-тРНК-синтетез. метионин присоединенный к тРНКFMet и тРНКIMet формилируется ферментом метионил-тРНК-трансформилазой до Fmet-тРНКFMet. тРНК нагруженные формилметионином узнают инициаторный кодон AUG.

К сожалению, список литературы отсутствует.

Присоединение аминокислоты к трнк

§ 16. ПЕРЕНОС ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ В КЛЕТКЕ: ТРАНСляцИЯ

Синтез белка (трансляция) в клетке представляет собой, пожалуй, самый сложный биосинтетический процесс. В нем участвует очень большое число белков, иРНК, тРНК, рРНК в составе рибосом и другие молекулы. При его протекании затрачивается большое количество энергии. Различают несколько стадий биосинтеза белка: активация аминокислот, инициация, элонгация и терминация.

Читайте так же:  Мощные жиросжигатели для мужчин рейтинг

Соответствие между полинуклеотидной и полипептидной последовательностями

Синтез белка отличается от других матричных процессов (репликации, транскрипции) тем, что между матрицей (иРНК) и продуктом (белком) нет комплементарного соответствия. Для расшифровки нуклеотидной последовательности необходим генетический код. Он устанавливает соответствие между нуклеотидной последовательностью иРНК и синтезируемой на ней полипептидной цепью. Единицей генетического кода является кодон. Кодон представляет собой последовательность, состоящую из трех нуклеотидов, т.е. триплет. Всего существует 64 кодона. Из них 61 кодон используется для кодирования аминокислот. Три же кодона не кодируют ни одну из аминокислот и служат сигналом для остановки синтеза полипептидной цепи. Это так называемые терминирующие, или нонсенс-кодоны. Каждому кодону (из 61) соответствует строго определенная аминокислота, например, триплету УУУ соответствует аминокислота фенилаланин (таблица 6), т.е. код однозначен. Следовательно, зная последовательность иРНК, можно определить аминокислотную последовательность закодированного в ней полипептида:

Трансляция иРНК (считывание информации) начинается с инициирующего триплета – АУГ, и далее расшифровывается каждый последующий триплет в направлении от 5’-конца молекулы иРНК к 3’-концу, заканчивается синтез полипептида на одном из трех терминирующих кодонов (рис. 52). Синтез же полипептидной цепи начинается с N-конца.

Рис. 52. Кодирующая последовательность начинается с инициирующего триплета и заканчивается терминирующим

Как ранее отмечалось, существуют 20 стандартных аминокислот. Этим 20 аминокислотам соответствует 61 кодон. Таким образом, почти каждой стандартной аминокислоте соответствует несколько кодонов, т.е. одна аминокислота может быть закодирована несколькими кодонами. Из этого следует, что нельзя однозначно перевести аминокислотную последовательность данного белка в нуклеотидную последовательность иРНК.

Примечание: Терм. 1 – терминирующий кодон

Иниц. 2 – инициирующий кодон

Информационная РНК

Информационные РНК (их еще называют матричные РНК (мРНК)) служат матрицами для биосинтеза полипептидных цепей. Они содержат линейную последовательность кодонов, которые и определяют первичную структура белка. иРНК – это одноцепочечные молекулы. Одна молекула иРНК может кодировать одну или несколько полипептидных цепей. Если иРНК несет информацию об одной полипептидной цепи, то ее называют моноцистронной, если о двух или более – полицистронной. иРНК прокариот бывают часто полицистронными, иРНК эукариот являются моноцистронными. На 3’- и 5’- концах иРНК содержат некодирующие последовательности. Полицистронные иРНК также могут содержать нетранслируемые межгенные области, которые разделяют участки, кодирующие полипептидные цепи. иРНК эукариот на 5’-конце имеет кэп, а на 3’- конце – полиА. На рис. 53 представлены схемы строения иРНК прокариот и эукариот.

Рис. 53. Информационные РНК

[3]

Транспортные РНК

тРНК трансформируют генетическую информацию, закодированную в иРНК, в информацию о первичной структуре белка.

тРНК – это небольшие молекулы, состоящие из 73 – 93 нуклеотидов, что соответствует относительной молекулярной массе 24000 – 31000. Каждой аминокислоте соответствует одна или более тРНК. На рис. 54 показано строение тРНК. Молекула тРНК имеет вид клеверного листа. Между азотистыми основаниями в ее молекуле образуются водородные связи. На 3’-конце всех тРНК находится тринуклеотидная последовательность Ц-Ц-А. В тРНК выделяют акцепторную и антикодоновую ветви. К акцепторной ветви присоединяется аминокислота. А антикодоновая ветвь содержит антикодон, — триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Более подробно о назначении акцепторной ветви и антикодона поговорим чуть позже.

Интересно знать! Обнаружены тРНК, которые обусловливают нестандартное считывание кодовой таблицы, причем антикодоны этих тРНК некомплементарны считываемым кодонам. Обнаружены и альтернативы в чтении кода. Так терминирующий кодон УГА у разных объектов кодирует необычную аминокислоту – селено-цистеин, но только при условии, что этот кодон оказывается в определенной точке гена.

Рибосомы

Рибосомы – это субклеточные структуры, являющиеся местом синтеза белка. Рибосомы состоят из двух субъединиц – большой и малой. В состав рибосом входят белки и рРНК (рис. 55). В прокариотических рибосомах присутствуют три вида рРНК, в эукариотических – 4. рРНК играют важную роль в структуре и биосинтетической функции рибосом.

Рис. 55. Рибосомы

Активация аминокислот

На этой стадии каждая из 20 аминокислот присоединяется к определенной тРНК. При этом используется энергия АТФ. Эти реакции катализируются 20 различными ферментами, называемыми аминоацил-тРНК-синтетазами. Каждая аминоацил-тРНК-синтетаза способна узнавать только одну определенную аминокислоту и соответствующую ей тРНК. Они присоединяют аминокислотный остаток к 2’- или 3’-гидроксильной группе 3’-концевого нуклеотида. Суммарная реакция активации аминокислоты выглядит так:

Инициация белкового синтеза

Процессы трансляции эукариотической иРНК и прокариотической иРНК в общих чертах сходны. Инициация начинается с присоединения к малой субъединице рибосомы иРНК и первой аминоацил-тРНК (аа-тРНК), антикодон которой комплементарен инициирующему кодону АУГ (рис. 56). После связывания антикодона тРНК с инициирующим кодоном происходит присоединение большой субъединицы рибосомы. Образовался инициирующий комплекс, в котором инициирующая аа-тРНК находится в Р (пептидильном)-центре, а А (аминоацильный) – центр свободен. Инициирующей аа-тРНК у эукариот является метионил-тРНК, у прокариот – формилметионил-тРНК, образующийся при модификации метионил-тРНК. Для осуществления инициации трансляции необходима энергия. Ее поставляет ГТФ. Поставляемая энергия высвобождается при гидролизе ГТФ до ГДФ и фосфата.

Рис. 56. Инициация трансляции. Инициирующей аа-тРНК у эукариот является метионил-тРНК

Элонгация белкового синтеза

Терминация

Терминация белового синтеза наступает, как только в А-центре окажется один из терминирующих кодонов: УАГ, УГА, УАА. В этом процессе участвуют специфические белки – факторы терминации. В результате терминации происходит гидролитическое отщепление полипептида от тРНК, тРНК отделяется от рибосомы, рибосома диссоциируют на субъединицы. Поставщиком энергии для терминации синтеза белка так же, как и для инициации и элонгации, является ГТФ.

Cell Biology.ru

Справочник

  • Обзоров: 126
  • Биографии: 12
  • Записей в дневниках: 13
  • Новостей: 16

Транспортная РНК

70-90Н | вторичная стр-ра- клеверный лист | CCA 3′ const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле — защита от рибонуклеаз ? долгоживущие | Разнообразие первичных структур tРНК — 61+1 — по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур — 20 (по кол-ву аминокислот) | рекогниция — образование ковалентной связи м-у tРНК и актой | аминоацил-тРНК-синтетазы присоединяют акты к тРНК

Функция тРНК заключается в переносе аминокислот из цитоплазмы в рибосомы, в которых происходит синтез белков.
тРНК связывающие одну аминокислоту называются изоакцепторными.
Всего в клетке одновременно существует 64 различных тРНК.
Каждая тРНК спаривается только со своим кодоном.
Каждая тРНК распознает свой собственный кодон без участия аминокислоты. Связавшиеся с тРНК аминокислоты химически модифицировали, после чего анализировали получившийся полипептид, который содержал модифицированную аминокислоту. Цистеинил-тРНКCys (R=CH2-SH) восстанавливали до аланил-тРНКCys (R=CH3).
Большинство тРНК, не зависимо от их нуклеотидной последовательности, имеют вторичную структуру в форме клеверного листа из-за наличия в ней трех шпилек.

Читайте так же:  Комплекс витаминов группы в в таблетках

Особенности структуры тРНК

Третичная структура тРНК

Присоединение аминокислот к тРНК

70-90н | вторичная стр-ра- клеверный лист | CCA 3′ const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле — защита от рибонуклеаз ? долгоживущие | Разнообразие первичных структур tРНК — 61+1 — по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур — 20 (по кол-ву аминокислот)

[2]

Имеются два вида тРНК связывающие метионин тРНКFMet и тРНКMMet у прокариот и, тРНКIMetи тРНКMMet — у эукариот. К каждой тРНК добавляется метионин с помощью соответствующих аминоацил-тРНК-синтетез. метионин присоединенный к тРНКFMet и тРНКIMet формилируется ферментом метионил-тРНК-трансформилазой до Fmet-тРНКFMet. тРНК нагруженные формилметионином узнают инициаторный кодон AUG.

К сожалению, список литературы отсутствует.

Активирование аминокислот

Необходимым условием синтеза белка, который в конечном счете сводится к полимеризации аминокислот, является наличие в системе не свободных, а так называемых активированных аминокислот со своим внутренним запасом энергии. Активация свободных аминокислот осуществляется при помощи специфических ферментов – аминоацил-тРНК-синтетаз – в присутствии АТФ.

Этот процесс протекает в две стадии:

Обе стадии катализируются одним и тем же ферментом. На I стадии аминокислота вступает в реакцию с АТФ, при этом освобождается пиро-фосфат и образуется промежуточный продукт, который на II стадии реагирует с соответствующей 3′-ОН-тРНК, в результате чего образуется аминоацил-тРНК (аа-тРНК) и освобождается АМФ. Аминоацил-тРНК располагает необходимым запасом энергии и имеет следующее строение:

Необходимо еще раз подчеркнуть, что аминокислота присоединяется к свободному концевому 3′-ОН-гидроксилу (или 2′-ОН) АМФ, который вместе с двумя остатками ЦМФ образует концевой триплет ЦЦА, являющийся одинаковым для всех транспортных РНК.

СТАДИЯ ИНИЦИАЦИЯ

Транскрипция- процесс считывания информации о структуре белка с участка ДНК (гена) на И-РНК.

Задание № 1

1.Прочитайте ниже изложенный учебный материал.

2.Проанализируйте таблицы из приложения

3.Ответьте на вопросы самоконтроля.

Обмен веществ— это совокупность всех процессов превращения энергии и химических веществ в биологических системах.

Обмен веществ

Пластический обмен – это совокупность процессов, в ходе которых из простых органический и неорганических веществ образуются более сложные вещества.

Важное место в пластическом обмене играет синтез белка.

Этот процесс необходим, так как ДНК находится в ядре и не покидает его в период интерфазы, а биосинтез белка протекает обычно в цитоплазме.

Происходит транскрипция путем синтеза на одной из цепей молекулы ДНК – одноцепочечной молекулы и-РНК, последовательность нуклеотидов которой комплиментарная последовательности нуклеотидов матрицы- ДНК. На гене можно снять любое количество копий.

В результате образуется цепочка и- РНК по составу и последовательности нуклеотидов комплементарна одной из цепей гена. Затем и-РНК отправляется к месту синтеза белка, т.е. к рибосомам.

В начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором. РНК-полимераза «узнает» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки и-РНК с нужного места. Фермент продолжает синтезировать и-РНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдет до очередного «знака препинания» в молекуле ДНК — терминатора. Это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить.

Трансляция – перевод последовательности нуклеотидов в молекуле и.РНК в последовательность аминокислот в синтезируемой молекуле белка.

Доставку аминокислот к месту синтеза белка ( к рибосомам) осуществляет т-РНК. Каждой аминокислоте соответствует своя т.РНК, таким образом в природе существует не менее 20 разных т — РНК ( всего 64). Т- РНК имеет сложную петлистую структуру, похожую по форме на листок клевера, имеется антикодон он комплементарен определенному триплету и-РНК и соотвествует определенной аминокислоте.

В цитоплазме обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

Необходимо помнить, что любая аминокислота может попасть в рибосому, только прикрепившись к специальной транспортной РНК (тРНК).

Трансляция. В цитоплазме происходит завершающий процесс синтеза белка – трансляция. Это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. Важную роль здесь играют тРНК. Каждая тРНК присоединяет определённую аминокислоту и транспортирует её к месту сборки полипептида в рибосоме. В молекуле тРНК есть два активных участка: триплет-антикодон на одном конце и акцепторный конец на другом. Антикодон считывает информацию с иРНК, акцепторный конец является посадочной площадкой для аминокислоты. Синтез полипептидной цепи белковой молекулы начинается с активации аминокислот, которую осуществляют специальные ферменты. Каждой аминокислоте соответствует как минимум один фермент. Фермент обеспечивает присоединение аминокислоты к акцепторному участку тРНК с затратой энергии АТФ.

Начала синтеза цепи с тем концом и-РНК, с которого должен начаться синтез белка, взаимодействует рибосома. При этом начало будущего белка обозначается триплетом АУГ, который является знаком начала трансляции- это точка промотор.. Так как этот кодон кодирует аминокислоту метионин, то все белки (за исключением специальных случаев) начинаются с метионина.

2. СТАДИЯ ЭЛОНГАЦИЯ – удлинение

После связывания рибосома начинает двигаться по и-РНК, задерживаясь на каждом ее участке, который включает в себя два кодона (т. е. 3 + 3 = 6 нуклеотидов). Время задержки составляет всего 0,2 с. За это время молекула т-РНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Та аминокислота, которая была связана с этой т-РНК, отделяется от «черешка» и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая т-РНК, антикодон которой комплементарен следующему триплету в и-РНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку. После этого рибосома сдвигается по и-РНК, задерживается на следующих нуклеотидах, и все повторяется сначала сборка полипептидной цепи идет в направлении 5-3

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8785 —

| 7163 — или читать все.

Е) Присоединение аминокислот к соответствующим т-РНК

Урок №

Дата 20.01

Тема: «Обмен веществ и преобразование энергии в клетке. Энергетический обмен»

Цель: познакомить с сущностью энергетического обмена, его этапами, со строением и ролью АТФ в клетке.

Читайте так же:  Витамины для шерсти кошек

Задачи

Обучающие: способствовать формированию знаний об этапах энергетического обмена, о строении и роли АТФ в клетке.

Развивающие: способствовать развитию умения анализировать и систематизировать материал;

Воспитательные: способствовать формированию научного мировоззрения.

План-конспект

I. Контроль знаний и умений учащихся по теме «Обмен веществ и превращение энергии. Пластический обмен»

Вопросы для письменного опроса:

тесты по теме «Биосинтез белка»

1. Структура одного белка определяется:

Группой генов

Одним геном

Одной молекулой ДНК

Совокупностью генов организма

2. Один триплет ДНК несет информацию о:

Последовательности аминокислот в молекуле белка

Признаке организма

Аминокислоте в молекуле синтезируемого белка

Составе молекулы РНК

3. Ген кодирует информацию о последовательности мономеров в молекуле:

Т-РНК

Белка

Гликогена

ДНК

4. Антикодонами называются триплеты:

ДНК

Т-РНК

Видео удалено.
Видео (кликните для воспроизведения).

Р-РНК

И-РНК

5. Понятие «транскрипция» относится к процессу:

Удвоения ДНК

Синтеза и-РНК на ДНК

Перехода и-РНК на рибосомы

Создания белковых молекул на полисоме

6. Пластический обмен состоит преимущественно из реакций:

Распада органических веществ

Распада неорганических веществ

Синтеза органических веществ

Синтеза неорганических веществ

7. Участок молекулы ДНК, несущий информацию об одной молекуле белка — это:

Ген

Фенотип

Геном

Генотип

8.Транскрипция у эукариот происходит в:

Цитоплазме

Эндоплазматическом ретикулуме

Лизосомах

Ядре

9.Синтез белка происходит в:

Гранулярном эндоплазматическом ретикулуме

Гладком эндоплазматическом ретикулуме

Ядре

Лизосомах

10. Процесс трансляции не происходит:

В цитоплазме

В ядре

В митохондриях

На мембранах шероховатой эндоплазматической сети

11. Одна аминокислота кодируется:

Четырьмя нуклеотидами

Двумя нуклеотидами

Одним нуклеотидом

Тремя нуклеотидами

12. Триплету нуклеотидов АТЦ в молекуле ДНК будет соответствовать кодон молекулы и-РНК:

ТАГ 2) УАГ 3) УТЦ 4) ЦАУ

Определите последовательность реакций матричного синтеза белка

A) Объединение и-РНК с рибосомой

Б) Ферментативный разрыв водородных связей молекулы ДНК

B) Синтез и-РНК на участке одной из цепей ДНК

Г) Объединение т-РНК с рибосомой и узнавание своего кодов

Д) Присоединение аминокислоты к т-РНК

Е) Отделение белковой цепи от т-РНК

14. Укажите последовательность явлений и процессов, происходят в процессе синтеза белка:

A)поступление молекулы и — РНК из ядра в цитоплазму

Б) взаимодействие молекулы т-РНК, несущей первую аминокислоту данного белка, с рибосомой в комплексе с иРНК

B)образование пептидной связи

Г) синтез молекулы и-РНК на матрице ДНК

Д) терминация трансляции

Е) связывание молекулы и-РНК с рибосомой

Постройте последовательность реакций трансляции, выписав буквы в нужном порядке.

A)Присоединение аминокислоты к т-РНК

Б) Начало синтеза полипептидной цепи на рибосоме

B)Присоединение и-РНК к рибосоме

Г) Окончание синтеза белка

Д) Удлинение полипептидной цепи

Е) Соединение кодона с антикодоном

16. Установите последовательность этапов синтеза белка:

A)Попадание фрагмента и-РНК в акцепторный участок функционального центра рибосомы (ФЦР);

Б) Присоединение т-РНК с аминокислотой к соответствующему кодону и-РНК в акцепторном участке ФЦР;

B)Перемещение т-РНК с растущим белком в донорный участок ФЦР;

Г) Транскрипция;

Д) Удлинение полипептидной цепи на одну аминокислоту;

Е) Присоединение аминокислот к соответствующим т-РНК.

3.Изучение нового материала по теме: «Обмен веществ и преобразование энергии в клетке. Энергетический обмен»

С поступлением пищи в организм начинается энергетический обмен. Он состоит из трёх этапов.

Этапы энергетического обмена:

Подготовительный

Бескислородный

Кислородное расщепление.

Первый этап – подготовительный.

Что происходит с органическими веществами в процессе пищеварения?

— Сложные органические вещества расщепляются до простых соединений или мономеров

Белки———-аминокислоты

Липиды———глицерин + жирные кислоты

Углеводы——глюкоза

Дата добавления: 2016-10-07 ; просмотров: 399 | Нарушение авторских прав

Этапы трансляции

Подготовительные стадии

Трансляция

Трансляция – процесс перевода генетической информации с последовательности нуклеотидов мРНК в последовательность аминокислот в молекуле полипептида. Трансляция осуществляется согласно правилам генетического кода, который имеет следующие особенности:

1. Код – триплетный, т. е. одну аминокислоту определяет три нуклеотида.

2. Код – однозначный (специфичный): каждый кодон обозначает только одну аминокислоту.

3. Код – непрерывный, т. е. отсутствуют сигналы, показывающие конец одного кодона и начало следующего.

4. Код – вырожденный, т. е. одной аминокислоте может соответствовать более одного кодона. Только две аминокислоты – метионин и триптофан – имеют по одному кодону. Лейцину и серину соответствует 6 кодонов, глицину и аланину – по 4 и т. д. Если аминокислота кодируется несколькими кодонами, то в большинстве случаев они различаются по третьей букве, т. е. по нуклеотиду на 3′-конце. Таким образом, специфичность каждого кодона определяется главным образом его первыми двумя нуклеотидами.

5. Код не перекрывается, т. е. один нуклеотид не может одновременно входить в два соседних триплета.

6. Генетический код содержит триплеты, обозначающие начало и окончание синтеза белка. АУГ – инициирующий кодон (кодирует метионин). УАА, УАГ, УГА – терминирующие кодоны, которые не кодируют ни одну из известных аминокислот и сигнализируют об окончании синтеза белка.

7. Генетический код универсален, т. е. одинаков у животных, растений, многих бактерий.

Подготовительные стадии трансляции включают:

— присоединение аминокислот к тРНК.

Обе стадии осуществляются с помощью фермента – аминоацил-тРНК-синтетазы (АРС-азы, кодазы). Существует 20 видов таких ферментов – по числу аминокислот. В каждом случае фермент имеет два центра узнавания – для аминокислоты и тРНК (рис. 35).

Рис. 35. Связывание аминокислоты (фенилаланина – Phe) с тРНК

В активном центре фермента аминокислота связывается с АТФ, лишь затем переносится на тРНК. Образование макроэргической связи между аминокислотой и тРНК называется аминоацилированием, а образовавшийся комплекс – аминоацил-тРНК (аа-тРНК). Каждая тРНК может переносить к месту синтеза белка только одну из аминокислот. Для большей части аминокислот имеется несколько тРНК, которые называются изоакцепторными и обозначаются соответственно тРНК1 Phe , тРНК2 Phe и т. д.

Собственно процесс трансляции включает три фазы:

Инициация трансляции – начало синтеза полипептидной цепи, заключается в сборке белоксинтезирующей системы (активной рибосомы).

Функциональные центры рибосом.

Каждая рибосома состоит из двух субчастиц: большой и малой. Форма субчастиц, их контактирующих поверхностей, достаточно сложная (рис. 36). На контактирующих поверхностях большой и малой субчастиц в небольших углублениях находятся центры связывания всех компонентов белоксинтезирующей системы (мРНК, пептидил-тРНК, очередная аминоацил-тРНК), а также центры, катализирующие образование пептидной связи и постепенное перемещение рибосомы относительно мРНК.

Рис. 36. Модель рибосомы Escherichia coli (Васильев В.Д., Институт белка РАН):

слева – перекрывающаяся проекция: малая (30S) субчастица обращена к зрителю
и закрывает собой часть большой (50S) субчастицы; справа – боковая проекция:
к зрителю обращен боковой палочкообразный выступ большой (50S) субчастицы,
а малая (30S) субчастица расположена вверху

Функциональные центры рибосом (рис. 37):

Читайте так же:  Содержание креатина в крови норма

1.

Центр связывания мРНК (М-центр). Образован участком 18S-рРНК, который комплементарен на протяжении 5-9 нуклеотидов 5′-нетранслируемому фрагменту мРНК. Расположен на малой субчастице рибосомы.

2. Пептидильный центр (П-центр). В начале процесса трансляции с пептидильным центром связывается инициирующая аа-тРНК. На последующих стадиях трансляции в пептидильном центре находится пептидил-тРНК, содержащая уже синтезированную часть пептидной цепи.

3. Аминоацильный центр (А-центр) – место связывания очередной аа-тРНК. Аминоацильный и пептидильный центры расположены как на большой, так и на малой субчастицах рибосомы.

4. Каталитический (пептидилтрансферазный) центр (К-центр). Катализирует перенос пептидила из состава пептидил-тРНК на поступившую в амино-ацильный центр очередную аа-тРНК. Расположен на большой субчастице рибосомы.

Инициация трансляции у прокариот начинается со связывания мРНК в области 5 — нетранслируемого участка с малой субъединицей рибосомы. Инициирующий кодон (АУГ) оказывается на уровне пептидильного центра будущей рибосомы. Далее за счет комплементарного взаимодействия с этим кодоном происходит связывание инициирующей аа-тРНК. У прокариот инициирующей аа-тРНК является формилметиониновая аа-тРНК – fМet-тРНКi fMet
(рис. 38). Блокирование аминогруппы метионина формильным остатком препятствует включению такой аминокислоты во внутренние участки цепи, но в то же время позволяет fМet-тРНКi fMet связываться с инициирующим кодоном мРНК (АУГ). Инициирующая аа-тРНК, взаимодействуя с пептидильным центром большой субъединицы, вызывает связывание последней.

У прокариот инициация осуществляется при участии трех специфических белков – факторов инициации (IF – Initiation Factors). IF-3, присоединяясь к малой субчастице рибосомы, препятствует преждевременному связыванию большой субчастицы и, с другой стороны, способствует связыванию мРНК. IF-2 участвует в связывании инициирующей аа-тРНК. Вероятно, этот фактор образует комплекс с аа-тРНК еще вне рибосомы, причем в состав комплекса входит ГТФ. В результате образуется так называемый инициаторный комплекс, состоящий из малой субчастицы рибосомы, мРНК, инициаторной аминоацил-тРНК и факторов инициации (рис. 39). Большая субчастица при ассоциации с малой субчастицей вызывает гидролиз ГТФ (до ГДФ и Фн) и одновременно вытесняет все факторы инициации, включая IF-3. В итоге инициации трансляции образуется полная 70S (у прокариот) рибосома с пептидильнымучастком, занятым инициаторной формилметионил-тРНК, и со свободным аминоацильнымучастком.

Рис. 39. Инициация трансляции у прокариот

Элонгация трансляции – основной и самый продолжительный этап белкового синтеза, в ходе которого происходит удлинение полипептидной цепи за счет последовательного присоединения аминокислот. Начинается с момента образования первой пептидной связи и заканчивается после включения в полипептидную цепь последней аминокислоты.

Элонгация у бактерий осуществляется при участии трех белковых факторов (EF-Tu, EF-Ts, EF-G) и имеет циклический характер.

Цикл элонгации включает 3 стадии:

1. Связывание аа-тРНК с аминоацильным центром рибосомы. На этой стадии со свободным А-центром рибосомы связывается очередная аа-тРНК – та, чей антикодон комплементарен кодону мРНК, находящемуся в А-центре. Поступив в А-центр, аа-тРНК закрепляется в нем в комплексе с белковым фактором EF-Tu (EF – Elongation Factor) и ГТФ. При участии фактора EF-Тu осуществляется гидролиз ГТФ до ГДФ и Фн, а выделяющаяся энергия расходуется на сближение двух аминокислотных остатков. Комплекс EF-Tu·ГДФ при этом покидает рибосому и регенерируется с участием фактора EF-Ts, так что фактор EF-Tu вновь оказывается связанным с молекулой ГТФ (рис. 40).

Рис. 40. Этап элонгации в синтезе белка у прокариот

2. Образование пептидной связи. В рибосоме после первой стадии цикла находятся пептидил-тРНК (в П-центре) и аа-тРНК (в А-центре). При этом их акцепторные петли и связанные с ними аминокислотные остатки располагаются в каталитическом (К-) центре. Последний и осуществляет пептидилтрансферазную реакцию: переносит пептидил (или инициирующую аминокислоту – формилметионин у прокариот) на аминокислоту поступившей аа-тРНК. Прежняя тРНК пептидила становится свободной (рис. 40).

В ходе пептидилтрасферазной реакции карбоксильная группа пептидила образует пептидную связь с аминогруппой очередной аминокислоты (рис. 41). Таким образом, рост пептидной цепи при трансляции происходит в направлении от N- к С-концу.

Рис. 41. Пептидилтрансферазная реакция

3. Транслокация – перемещение пептидил-тРНК из А-центра в П-центр в результате передвижения рибосомы по мРНК на один кодон. Свободная тРНК вытесняется из рибосомы, и одновременно освобождается А-центр, необходимый для связывания следующей аа-тРНК. Транслокация идет с участием белкового фактора EF-G (у бактерий) и сопровождается гидролизом одной молекулы ГТФ.

Таким образом, удлинение пептидной цепи на один аминокислотный остаток требует расхода двух молекул ГТФ (одна идет на связывание аа-тРНК, вторая – на траслокацию). Многократное повторение циклов элонгации приводит к включению в строящуюся пептидную цепь аминокислотных остатков в соответствии с последовательностью кодонов в мРНК.

Терминация трансляции . Сигналом об окончании трансляции служит появление в рибосоме одного из терминирующих кодонов мРНК: УАА, УАГ или УГА. С терминирующим кодоном, находящимся в А-центре, взаимодействуют особые белки – факторы терминации, или рилизинг-факторы (от англ. relеase – освобождать). У бактерий в терминации трансляции участвуют три белковых фактора: RF-1, RF-2 и RF-3. Фактор RF-1 узнает кодоны УАА и УАГ, а фактор RF-2 – кодоны УАА и УГА. Фактор RF-3 выполняет вспомогательную роль, стимулируя работу RF-1 и RF-2. При поступлении в рибосому одного из терминирующих кодонов с ним немедленно связывается соответствующий RF-фактор и тем самым блокирует присоединение аа-тРНК. Присоединение факторов терминации стимулирует гидролизную активность пептидилтрасферазного (каталитического) центра, в результате чего связь полипептида с тРНК гидролизуется. Синтезированный белок отделяется от рибосомы, одновременно отделяются тРНК и мРНК, а рибосома диссоцирует на субчастицы (рис. 42).

В терминации трансляции принимает участие молекула ГТФ, которая, вероятно, служит аллостерическим регулятором активности белковых факторов терминации.

Рис. 42. Терминация синтеза пептидной цепи у бактерий

Видео удалено.
Видео (кликните для воспроизведения).

Не нашли то, что искали? Воспользуйтесь поиском:

Источники


  1. Мовшович А. Д. Фехтование на шпагах. Научные данные и спортивная тренировка; Академический Проект — , 2012. — 160 c.

  2. Полторанов, В. В. Курортное лечение хронических заболеваний органов пищеварения / В.В. Полторанов. — М.: Профиздат, 1979. — 304 c.

  3. Виноградов, В. М. Лекарственные растения в лечении заболеваний органов пищеварения / В.М. Виноградов, В.К. Мартынок, В.В. Чернакова. — М.: Знание, 1991. — 192 c.
  4. Пушкин, В. Гимнастика за рулем / В. Пушкин. — М.: Эксмо, 2011. — 764 c.
Присоединение аминокислоты к трнк
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here