Расщепление белков до пептидов и аминокислот

Сегодня предлагаем ознакомится со статьей на тему: расщепление белков до пептидов и аминокислот с профессиональным описанием и объяснением.

Всасывание белков, пептидов и аминокислот

Читайте также:

  1. Всасывание
  2. Всасывание
  3. Всасывание
  4. Всасывание аминокислот
  5. Всасывание аминокислот
  6. ВСАСЫВАНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ
  7. Всасывание аминокислот и утилизация. Межуточный обмен аминокислот.
  8. Всасывание белков, пептидов и аминокислот.
  9. Всасывание в тонком кишечнике
  10. Всасывание веществ в различных отделах пищеварительного тракта, его механизмы
  11. Всасывание лекарственных веществ.

Ферментативный гидролиз.

Переваривание и всасывание белков

Взрослые потребляют с пищей 70-90 г белков в день, а детям в расчете на 1 кг веса их требуется в 5-10 раз больше.

Почти такое же количество белков поступает в просвет кишечника в составе пищеварительных соков, слущивающихся клеток и в виде белков сыворотки. При синдроме экссудативной энтеропатии через кишечник теряется так много белка плазмы, что его убыль не компенсируется синтезом новых белков в печени, и возникает гипопротеинемия.

Переваривание бел­ков начинается в желудке, но роль этого этапа относительно невелика, посколькупепсином гидролизуется не более 10-15% белков пищи. У больных, страдающих ахилией и дефицитом пепсина, белки, тем не менее, могут нормально перевариваться, так как в тонком кишечнике переваривание белков про­исходит чрезвычайно эффективно.

Через 10-20 мин после приема пищи начинается образованиепанкре­атических пептидаз, которое продолжается до тех пор, пока белки присутствуют в кишечнике. Часть этих ферментов выделяется с калом. Содержание химотрипсина в каловых массах может служить показателем функциональной активности поджелу­дочной железы.

[3]

Различные панкреатические ферменты, катализи­рующие гидролиз белков, атакуют белковую моле­кулу в разных участках (табл. 29.2).

В двенадцати­перстной кишке, куда эти ферменты поступают в неактивной форме, происходит их активация трипсином, образующимся из трипсиногена под действием энтерокиназы.

[1]

Ферменты, гидролизующие белки, подразделяют наэндопептидазы (трип­син, химотрипсин, эластаза) иэкзопептидазы (карбопептидазы А и В).

Эндопептидазы расщепляют внутренние связи в белковой молекуле с образова­нием олигопептидов.

Экзопептидазы отщепляют аминокислоты с концов пептидной цепи.

Около 30% конечных продуктов гидролиза составляют нейт­ральные и основные аминокислоты и 70% — олигопептиды, состоящие из 2-6 аминокислотных ос­татков.

В щеточной каемке и внутри энтероцитов при­сутствуют другие пептидазы.

В цитозоле подверга­ется гидролизу примерно 90% олигопептидов (ди- и трипептиды), поступающих в клетку при участии специальных транспортных систем.

Около 10% олигопептидов, главным образом состоящих из 4-8 аминокислотных остатков, гидролизуют ферменты, локализованные в щеточной каемке.

В каждом случае итог процесса — появление в крови ворот­ной вены аминокислот как конечных продуктов гидролитического расщепления белков.

При­мерно 50-60% белков пищи всасывается в двенад­цатиперстной кишке и около 30% — по мере прохож­дения химуса до подвздошной кишки, т.е. 80-90% экзогенных и эндогенных белков всасывается в тон­ком кишечнике.

Только около 10% белков достигает толстого кишечника, где они расщепляются под действием бактерий.

Небольшое количество белка выделяется с калом, но эта часть белка приходится на слущивающиеся клетки, а не на непереваренные остатки пищи.

Интактные молекулы белка поглощаются в очень небольшом количестве путем пиноцитоза (с. 751). Всасывание по этому пути не имеет значе­ния для усвоения белков, но может играть важную роль в связи с иммунореактивностью, приводя к сенсибилизации и аллергии.

Пептиды всасываются в виде ди- и трипептидов путем пассивного переноса или активного транспорта с участием переносчиков.

Поглощение аминокислот происходит с помощью четырех основных групп транспортных систем: для

3. дикарбоновых аминокислот

5. К дополнительной груп­пе относится система для глицина.

Системы первых трех групп осуществляют перенос по механизму сопряжения с транспортом Na + описанному выше (вторичноактивный транспорт) (с. 773); при этом всасывание кислых дикарбоновых аминокислот происходит как пассивный процесс, хотя и с участием переносчиков.

За счет внутри­клеточного переаминирования с участием аланина концентрация этих аминокислот в клетке сохраняет­ся низкой. Различные аминокислоты одной группы ингибируют перенос друг друга, конкурируя за один и тот же переносчик (конкурентное ингибирование).

Рис. 29.37. Переваривание и всасывание белков. Про­свет кишечника: расщепление полипептидов до олигопептидов, ди- и трипептидов и аминокислот. Мембраны клеток щеточной каемки: дальнейшее расщепление спе­цифическими пептидазами и поглощение аминокислот и олигопептидов. Цитоплазма: расщепление ди- и олигопептидов цитоплазматическими пептидазами до ами­нокислот. Базальная мембрана: выход аминокислот из клетки в кровь

Нуклеопротеины гидролизуются

и всасываются так же, как другие белки.

Нуклеиновые кислоты

— ДНК и РНК — гидролизуются специальными панкреатическими ферментами — дезоксирибонуклеаэой и рибонуклеазой и расщепляются в щеточной каемке фосфодиэстеразами и нуклеотидазами до нуклеотидов.

Нуклеотиды транспортируются в энтероциты при участии специальных механизмов (рис. 29.37).

| следующая лекция ==>
|

Дата добавления: 2014-01-11 ; Просмотров: 450 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Пути распада белков. Протеолитические ферменты…

Пути распада белков. Гидролитический распад белков протекает в любой клетке организма в основном в лизосомах, где сосредоточены гидролитические ферменты . В ряде органов и тканей (пищеварительная система животных, запасающие органы растений и т. п.) гидролиз белков осуществляется с огромной интенсивностью и в большом масштабе.

Выяснено, что время полужизни белка в клетке детерминировано природой его N-концевой аминокислоты. Если она легко соединяется с небольшим белком—убиквитином, то такой убиквитинированный белок атакуется протеиназами и разрушается. Наиболее подвержены убиквитинированию арг, лиз, асп, асн, три, лей, фен, гис, глу, тир, глн, иле. N-концевые аминокислоты, менее подверженные реакции с убиквитином (мет, сер, ала, тре, вал, гли, цис), относят к стабилизирующим гидролитический распад белков.

Гидролиз белков может быть частичным (до пептидов) и полным (до аминокислот). При частичном (неполном) гидролизе в белковой молекуле распадаются лишь некоторые пептидные связи, как правило, по соседству со строго определенными аминокислотными радикалами. Этот процесс ускоряется специфическими ферментами—протеиназами (пептидил-пептидгидролазами). В свою очередь, пептиды гидролизуются до аминокислот, что происходит при участии ряда пептидаз.

Таким образом, в результате деятельности разнообразных пептидгидролаз (протеиназы и пептидазы) из белков в процессе их гидролиза сначала образуются сложные смеси различных пептидов, а затем смесь свободных белковых аминокислот. Последние являются конечным продуктом гидролиза белков.

Роль протеиназ в организме не сводится лишь к фрагментированию белковых молекул до пептидов для обеспечения дальнейшего гидролиза последних до свободных аминокислот. В последнее время все большее значение придают именно способности протеиназ селективно расщеплять полипептидные цепи, в результате чего из белковых предшественников возникают функционально активные белки и многие биологически активные пептиды, в том числе гормоны, рилизинг-факторы. Это имеет огромное значение для регуляции обмена веществ. Протеолиз выступает как особая форма биологического контроля, однонаправленно обеспечивающего инициацию определенного физиологического процесса.

Читайте так же:  Натуральные жиросжигатели для мужчин

В последние годы привлекли внимание протеиназы, действие которых активируется Са2 + . Их называют кальпаинами. Они расщепляют белки по границам их доменов, связывая минеральный обмен с регуляцией метаболизма. Их действие ингибируется кальпостатином.

Пептид-гидролазы. Ферменты этого подкласса ускоряют гидролиз пептидных связей в белках и пептидах, а при определенных условиях также и образование пептидных связей. Среди пептид-гидролаз различают протеиназы или пептндил-пептидогидролазы, катализирующие гидролиз небольшого числа внутренних пептидных связей в белковой молекуле, в результате чего последняя распадается до пептидов. Они являются, следовательно, эндопептидазами. В отличие от этого пептид-гидролазы, называемые пептидазами, обеспечивают отщепление от пептидной цепи свободных аминокислот, будучи экзопептидазами.

Протеиназы в зависимости от механизма их действия на внутренние пептидные связи в белковой молекуле делят на 4 подподкласса: 1) сериновые протеиназы, несущие в активном центре радикалы сер и гис; представителями их являются химотрипсин и трипсин, выделяемые поджелудочной железой, субтилизин, продуцируемый бактериями, и др.; 2) тиоловые (цистеиновые) протеиназы, имеющие в активном центре остаток цис; к их числу принадлежат папаин из дынного дерева, фицин из фикуса 3) кислые (карбоксильные) протеиназы, имеющие оптимум рН ниже 5 и содержащие радикалы дикарбоновых аминокислот в активном центре; сюда относятся пепсин, выделяемый слизистой желудка; 4) металлопротеиназы, каталитическое действие которых зависит от присутствия ионов металлов (Са2+, Zn2+) в активном центре; примерами их могут служить коллагеназа и ряд протеиназ микробного происхождения.

Пепсин, трипсин и химотрипсин выделяются железистыми клетками в виде неактивных проферментов—зимогенов: пепсиногена, трипсиногена и химотрипсиногена, так как их активные центры блокированы фрагментами полипептидной цепи, после гидролитического отщепления которых фермент приобретает активность.

Очень важной особенностью протеиназ является выборочный (селективный) характер их действия на пептидные связи в белковой молекуле. Так, пепсин избирательно ускоряет гидролиз пептидных связей, образованных фен и лей; трипсин—арг и лиз; химотрипсин—ароматическими аминокислотами. В результате индивидуальный белок под действием определенной пептидил-пептидогидролазы расщепляется всегда на строго ограниченное число пептидов. Это находит практическое использование при определении первичной структуры белков и имеет огромное значение для регуляции обмена веществ, так как многие продукты селективного гидролиза белков обладают высочайшей биологической активностью: именно этим путем из проферментов возникают ферменты, из предшественников гормонов—гормоны и рилизинг-факторы и т. п. Причина избирательного действия пептидпептидогидролаз заключается в том, что радикал аминокислоты, по соседству с которой гидролизуется пептидная связь, служит для образования фермент-субстратного комплекса.

Расщепление белков до пептидов и аминокислот

Белки — высокомолекулярные органические соединения. Они играют огромную роль в жизнедеятельности клеток и тканей, являются важнейшей составной частью всего живого. «Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явления жизни» (Маркс К., Энгельс Ф. Соч., т. 20, с. 83). С белками в живом организме связаны важнейшие функции: рост и развитие клеток, пищеварение, размножение, передача наследственных признаков, раздражимость, мышечные сокращения, образование антигенов и антител, обратимое связывание и перенос жизненно важных веществ и др. Биологические катализаторы — ферменты являются белковыми веществами.

Белки — основной материал, из которого строится структура живой, клетки.

В состав белков входят (в процентах): углерод (50,6- 54,5), кислород (21,5-23,5), азот (15,0-17,6, в среднем 16), водород (6,5-7,3), сера (0,3-2,5), фосфор (0,5-0,6).

Суммарное количество белков в тканях определяют, умножая общее содержание в них азота на коэффициент 6,25.

Все белковые вещества разделяют на две группы: простые (протеины) и сложные белки (протеиды). Простые белки при гидролизе распадаются только на аминокислоты. В состав сложных белков, кроме аминокислот, входят также вещества небелковой природы — нуклеиновые

кислоты, углеводы, липиды, пигменты, фосфорная кислота, металлы и т. д.

В построении молекул различных белков участвуют более 20 аминокислот, которые могут быть разделены на две большие группы: ациклические и циклические. В зависимости от числа аминогрупп и карбоксильных групп в молекуле ациклические аминокислоты делят на: а) моноамшюмонокарбоновые, содержащие по одной амино- и карбоксильной группе; б) моноаминодикарбоновыс, в состав молекулы которых входят одна амино- и две карбоксильные группы; в) диаминомонокарбоновые, для которых характерно наличие в молекуле двух аминогрупп и одной карбоксильной. Циклические аминокислоты разделяют на карбоциклические и гетероциклические. В группу циклических включают также и иминокислоты.

В белковой молекуле аминокислоты соединены между собой пептидными связями. При образовании пептидной связи карбоксильная группа одной аминокислоты взаимодействует с аминной группой другой, при этом выделяется молекула воды:

Изучение распределения электронов в пептидной связи показало, что здесь имеет место явление мезомерии, или резонанса. Поэтому пептидная связь не является строго ни двойной, ни простой, занимая промежуточное положение, и схематически может быть представлена так:

Это подтверждают также данные, характеризующие расстояние между атомами углерода и азота для разных типов связи. Для двойной связи оно составляет 1,28А, простой — 1,48А, тогда как для пептидной -1,32А.

Резонанс является фактором, повышающим устойчивость химических соединений, и его наличием объясняется прочность пептидной связи.

Соединение из двух аминокислот носит название дипептид (например, глицил-аланин), из трех — трипептид, из четырех — тетрапептид и т. п., а из многих аминокислот — полипептид.

В образовании пептидной связи у моноаминодикар-боновых и диаминомонокарбоновых кислот принимают участие только аминогруппы и карбоксильные группы, связанные с а-углеродным атомом.

В пространственной конфигурации белковой молекулы имеют место различные типы связей. Чаще всего это водородные связи, но большую роль играют также дисульфидные, эфирные (ортофосфатные, пирофосфатные), фосфоамидные, ионные и др.

Аминокислоты и белки обладают амфотерным характером. При диссоциации как свободных аминогрупп, так и свободных карбоксильных групп они приобретают заряды: в кислой среде — положительный, в щелочной — отрицательный.

Регулируя pH среды, можно достигнуть такого состояния, когда диссоциация аминогрупп и карбоксильных групп будет одинаковой, т. е. уравняется количество положительных и отрицательных зарядов, следовательно, общий заряд частицы окажется равным нулю. Значение pH, при котором сумма положительных зарядов равна сумме отрицательных зарядов белковой частицы, называется изоэлектрической точкой. В изоэлектрической точке растворы белка весьма неустойчивы, белок из них легко выпадает в осадок. Значение изоэлектрической точки характерно для каждого белка и зависит от аминокислотного состава. Таким образом, меняя концентрацию водородных ионов, можно изменить заряд белковых частиц.

Читайте так же:  Что дает креатин и зачем его пить

Белки отличаются различной растворимостью.

При растворении белков в воде происходит гидратация их молекул. Вокруг каждой из них образуется водная оболочка (гидросфера). Наличие оболочек, состоящих из ориентированных в пространстве молекул воды, является наряду с зарядом белковых частиц фактором устойчивости белковых растворов. Под действием факторов, уменьшающих гидратацию белковых частиц (например, водоотнимающих средств) и нейтрализующих их заряд, растворимость

белков понижается и они могут выпасть в осадок.

Качественные реакции на аминокислоты, пептиды и белки можно разделить на две группы: а) цветные реакции, обусловленные аминокислотами и пептидами; б) реакции осаждения, в основе которых лежат изменения физико-химических свойств белковых молекул.

Ферментативное расщепление полипептида по специфическим участкам

Читайте также:

  1. ДОГОВОР МЕНЫ И ОБМЕН ЗЕМЕЛЬНЫМИ УЧАСТКАМИ.
  2. Общая характеристика права постоянного бессрочного пользования земельными участками.
  3. Особенности права безвозмездного срочного пользования земельными участками.
  4. ПОЖИЗНЕННОЕ НАСЛЕДУЕМОЕ ВЛАДЕНИЕ ЗЕМЕЛЬНЫМИ УЧАСТКАМИ
  5. Право пользования лесными участками предоставляется
  6. Право постоянного пользования и право пожизненного наследуемого владения земельными участками.
  7. Право постоянного пользования и право пожизненного наследуемого владения земельными участками. Сервитуты.
  8. Расщепление разума, тела и духа при травме
  9. Расщепление характера
  10. Результаты химических анализов по участкам скважин Киши-Майтобе и Дос (радиология и микробиология)
  11. Тема 12.17 Правонарушения против порядка приписки граждан к призывным участкам, призыва на воинскую службу и воинского учета

Многие полипептиды имеют первичную структуру, состоящую более чем из 100 аминокислот. Так как с помощью секвенаторов наиболее продуктивно определяют аминокислотную последовательность лишь небольших пептидов, молекулы полипептида расщепляют по специфическим местам на фрагменты.

Определение N-концевой аминокислоты в белке и последовательности аминокислот в олигопептидах

Фенилизотиоционат (ФИТЦ) — реагент, используемый для определения N-концевой аминокислоты в пептиде. Он способен реагировать с ?-аминогруппой и ?-карбоксильной группой свободных аминокислот, а также с N-концевой аминокислотой в пептидах (см. схему ниже).

В результате взаимодействия с N-концевой аминокислотой полипептида образуется фенил-тиогидантионовое производное, в котором дестабилизирована пептидная связь между ?-карбоксильной группой N-концевой аминокислоты и а-аминогруппой второй аминокислоты в пептиде. Эта связь избирательно гидролизуется без повреждения других пептидных связей.

После реакции выделяют комплекс ФИТЦ-АК1 идентифицируют его хроматографически-ми методами. ФИТЦ можно использовать вновь с укороченным пептидом, полученным в предыдущем цикле, для определения следующей аминокислоты. Этот процесс ступенчатого расщепления пептида с N-конца был автоматизирован и реализован в приборе — секвенаторе, с помощью которого можно определять последовательность аминокислотных остатков в олигопептидах, состоящих из 10-20 аминокислот.

Используя несколько разных расщепляющих агентов (ими могут быть ферменты или химические вещества) в разных пробах очищенного полипептида, можно получить частично перекрывающие друг друга фрагменты с установленной аминокислотной последовательностью. С их помощью можно воссоздать правильный порядок фрагментов и получить полную последовательность аминокислот в полипептидной цепи.

Для специфического расщепления пептидных связей в белке можно использовать несколько разных ферментов. Наиболее широко используют ферментативный гидролиз полипептида протеолитическим ферментом — трипсином, который относят к группе пищеварительных ферментов (его вырабатывает поджелудочная железа). Фермент обладает высокой специфичностью действия. Он расщепляет пептидные связи, в образовании которых участвует карбоксильная группа остатков лизина или аргинина.

Видео (кликните для воспроизведения).

Дата добавления: 2015-05-07 ; Просмотров: 705 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Расщепление белков до пептидов и аминокислот

Расщепление пеп­ти­дов на ами­но­кис­ло­ты про­ис­хо­дит в

В ро­то­вой по­ло­сти на­чи­на­ют рас­щеп­лять­ся углеводы,

в тол­стом кишечнике — клетчатка,

в же­луд­ке про­хо­дит толь­ко пер­во­на­чаль­ная ста­дия рас­щеп­ле­ния белков.

В тон­ком кишечнике расщепление пищи про­ис­хо­дит под воз­дей­стви­ем поджеледочного сока и ки­шеч­но­го сока.Поджелудочный сок очень богат пи­ще­ва­ри­тель­ны­ми ферментами. В нем ши­ро­ко представлены ферменты, рас­щеп­ля­ю­щие белки и полипептиды:трипсин, химотрипсин, эластаза, карбок­си­пеп­ти­да­зы и аминопептидазы. Кроме этих фер­мен­тов в под­же­лу­доч­ном соке присутствуют: липаза, рас­щеп­ля­ю­щая жиры; амилаза, за­кан­чи­ва­ю­щая полное рас­щеп­ле­ние крахмала до ди­са­ха­ри­да — мальтозы; ри­бо­ну­кле­аза и дезоксирибонуклеаза, рас­щеп­ля­ю­щие соответственно ри­бо­ну­кле­и­но­вые и дез­ок­си­ри­бо­ну­кле­и­но­вые кислоты.

В ки­шеч­ном соке кроме эн­те­ро­ки­на­зы содержатся ферменты, дей­ству­ю­щие на углеводы, жиры и полипептиды, об­ра­зу­ю­щи­е­ся при рас­щеп­ле­нии белков в же­луд­ке и две­на­дца­ти­перст­ной кишке. Рас­щеп­ле­ние последних осу­ществ­ля­ет­ся смесью пептидаз, в ко­то­рую входят аминопептидазы, карбок­си­пеп­ти­да­зы и др. В ки­шеч­ном соке об­на­ру­жи­ва­ют­ся слабоактивные ли­па­за и амилаза. В то же время в нем при­сут­ству­ют высокоактивные ферменты, рас­щеп­ля­ю­щие различные ди­са­ха­ри­ды до моносахаридов: ин­вер­та­за (сахараза), рас­щеп­ля­ю­щая сахарозу; мальтаза, рас­щеп­ля­ю­щая мальтозу (молочный сахар), об­ра­зо­вав­шу­ю­ся из крахмала; лактаза, рас­щеп­ля­ю­щая лактозу. В ре­зуль­та­те образуются моносахариды, ко­то­рые после вса­сы­ва­ния в ки­шеч­ни­ке поступают в кро­во­ток и по­па­да­ют в печень.

Таким образом, в тон­ком кишечнике за­вер­ша­ет­ся предпоследняя ста­дия гидролиза бел­ков — об­ра­зо­ва­ние небольших пептидов. Еще раз напомним, что пер­вая стадия — гид­ро­лиз белков под вли­я­ни­ем пепсина — про­ис­хо­дит в желудке, вто­рая стадия — гид­ро­лиз полипептидов под вли­я­ни­ем трипсина, химотрипсина, эла­ста­зы и карбок­си­пеп­ти­даз с об­ра­зо­ва­ни­ем более мел­ких пептидов — про­ис­хо­дит в по­ло­сти тонкого кишечника.

Какие химические превращения происходят в процессе пищеварения белков? Как осуществляется защита пищеварительной системы от самопереваривания? Назовите конечные продукты пищеварения белков и пути их дальнейших превращений в организме.

Белки пищи в ротовой полости не расщепляются, так как слюна не содержит гидролитических ферментов. Химическое расщепление белков начинается в желудке под воздействием протеолитических ферментов (пептидгидролаз), которые расщепляют пептидные связи между аминокислотами:

Эти ферменты образуются клетками слизистой оболочки желудка, тонкого кишечника и поджелудочной железы в неактивной форме. Такая форма ферментов предотвращает самопереваривание белков в клетках, где они синтезируются, и стенок желудочно-кишечного тракта.

В желудке переваривание белков происходит при участии фермента желудочного сока пепсина, который образуется из неактивного пепсиногена под воздействием соляной кислоты. Пепсин проявляет максимальную ферментативную активность в сильно кислой среде при рН 1-2. Кроме того, под воздействием соляной кислоты происходит набухание и частичная денатурация белков, что приводит к увеличению поверхности соприкосновения фермента с белками. Все это облегчает процесс расщепления белков в желудке. Пепсин расщепляет пептидные связи белковых молекул, в результате чего образуются высокомолекулярные пептиды и простетические группы.

В двенадцатиперстной кишке образовавшиеся пептиды подвергаются дальнейшему расщеплению при участии ферментов сока поджелудочной железы и кишечного сока — трипсина и химотрипсина. Поджелудочная железа вырабатывает неактивный фермент трипсиноген, который под действием фермента слизистой оболочки тонкого кишечника — энтерокиназы превращается в активный трипсин. Трипсин воздействует на другой неактивныи фермент поджелудочного сока — химотрипсиноген, превращая его в активный химотрипсин. Трипсин и химотрипсин проявляют максимальную активность в слабощелочной среде при рН 7,8. Они расщепляют белки (пептиды и полипептиды) на более простые соединения — низкомолекулярные пептиды (олигопептиды) и некоторое количество свободных аминокислот.

Окончательное расщепление низкомолекулярных пептидов до аминокислот происходит в тонком кишечнике под действием высокоспецифических ферментов аминопептидаз, карбоксипептидаз и дипептидаз. Превращение белков, как и углеводов, происходит не только в полости кишки, но и на поверхности клеток слизистой оболочки (контактное или пристеночное пищеварение). В полости кишки расщепляются преимущественно белковые молекулы, а на поверхности клеток (между микроворсинками) — относительно небольшие пептиды. Образовавшиеся свободные аминокислоты и некоторые простые пептиды при помощи сложных биохимических процессов всасываются в кровь и доставляются в печень и другие ткани.

Читайте так же:  Аминокислоты тема по химии

Белки, не расщепившиеся в тонком отделе кишечника, подвергаются расщеплению в толстом кишечнике под воздействием пептидаз, которые синтезируются находящейся здесь микрофлорой. Ферменты микрофлоры толстого кишечника способны расщеплять многие аминокислоты пищи с образованием различных токсичных веществ: фенола, крезола, индола, сероводорода, меркаптанов и др. Такое превращение аминокислот в толстом кишечнике называется гниением белков. Токсические вещества всасываются в кровь и доставляются в печень, где подвергаются обезвреживанию. Весь процесс переваривания белков в желудочно-кишечном тракте занимает в среднем 8-12 ч после принятия пищи. Всасывание аминокислот в кишечнике может включать разные механизмы их транспорта через стенку кишечника и капилляров: осмос, диффузию и активный транспорт. Особая роль в процессе всасывания принадлежит ворсинкам слизистой оболочки кишечника, в которых происходит АТФ-зависимый транспорт аминокислот, сопряженный с транспортом ионов натрия (Na+) или водорода (Н+).

Аминокислоты, образовавшиеся при расщеплении белков пищи и поступившие в ткани, используются преимущественно для биосинтеза специфических для организма белков. Ежедневно в организме образуется около 1,3 г белка на 1 кг массы тела, что и определяет суточную норму его потребления. Белки в клетках организма постоянно синтезируются, так как имеют ограниченное время жизни. Так, период полураспада белков печени составляет примерно 9 дней, белков мышц— 120 дней, а все белки организма обновляются приблизительно за 130—150 суток. Процессы биосинтеза белков играют очень важную роль в процессах роста и развития организма в восстановлении и адаптации при спортивной деятельности.

Аминокислоты, не использованные непосредственно для синтеза белка или образовавшиеся при внутриклеточном распаде белков, подвергаются дальнейшим превращениям.

Имеется несколько типов реакций превращения аминокислот, характерных для внутриклеточного обмена. Это реакции дезаминирования, трансаминирования (переаминирования) и декарбоксилирования.

Дезаминирование аминокислот связано с потерей NН2-группы и образованием свободного аммиака и кетокислот. Реакции дезаминирования протекают при участии ферментов дезаминаз или оксидаз. Кроме аммиака, при дезаминировании аминокислот образуются окси- и кетокислоты. Различают несколько видов процесса дезаминирования: восстановительное, гидролитическое, внутримолекулярное и окислительное. У животных и человека преобладают два последних вида дезаминирования.

Окислительное дезаминирование аминокислот интенсивно протекает при увеличении потребления энергии в клетке, так как эта реакция сопровождается извлечением энергии в виде высокоэнергетического Н2 в составе восстановленного НАДН2 или ФАДН2. Наиболее активно окислительному дезаминированию подвергается глутаминовая кислота, что связано с высокой активностью глутаматдегидрогеназы, обнаруженной почти во всех тканях:

Фермент глутаматдегидрогёназа катализирует как реакцию дезаминирования, так и обратимую реакцию — аминирования, что приводит к образованию глутаминовой кислоты из аммиака и а-кетоглутаровой кислоты. Этот процесс называется восстановительным аминированием.

Трансаминирование аминокислот — это реакция переноса аминогруппы с аминокислоты на кетокислоту. Такие реакции обратимы и получили название «переаминирование», или «трансаминирование». В ходе реакций трансаминирования образуются новые амино- и кетокислоты:

В настоящее время изучено более 60 реакций трансаминирования. Они катализируются сложными ферментами аминотрансферазами, коферментом которых является фосфопиридоксаль (витамин В6). Реакциям трансаминирования принадлежит решающая роль в азотистом обмене организма, так как при этом образуются новые кислоты. Эти реакции поставляют в печень почти половину аммиака, который обезвреживается в процессе синтеза мочевины и выводится из организма как конечный продукт азотистого обмена.

Декарбоксилирование аминокислот — это также один из путей превращения аминокислот в тканях, связанный с отщеплением карбоксильной группы и выделением углекислого газа (СО2). При декарбоксилировании монокарбоновых аминокислот образуются амины и СО2. Функционально важной реакцией такого типа является декарбоксилирование аминокислоты гистидина, ведущее к образованию тканевого гормона гистамина:

Реакции декарбоксилирования катализируются ферментами — декарбоксилазами аминокислот, коферментом которых является также фосфопиридоксаль (витамин В6). Декарбоксилирование аминокислот — необратимый процесс превращения аминокислот, который приводит к образованию биогенных аминов, отличающихся чрезвычайной биологической активностью.

Многие аминокислоты и продукты их превращения могут вступать в цикл окисления или биосинтеза других классов веществ. Преврашение отлельных аминокислот в углеволы и жиры. Аминокислоты имеют разные углеродные скелеты и свои метаболические пути превращения. В процессе катаболизма они могут превращаться в отдельные метаболиты цикла лимонной кислоты, в пировиноградную кислоту либо в ацетил-КоА (кофермент (коэнзим)А).

В дальнейшем эти метаболиты могу превращаться в глюкозу либо в жирные кислоты и кетоновые тела. Аминокислоты, из которых в процессе глюконеогенеза образуется глюкоза называются глюкогенными, а из которых образуются жирные кислоты и кетоновые тела — кетогенными. Часть аминокислот окисляется до конечных продуктов обмена СО2 и Н2О с накоплением энергии. Однако аминокислоты обеспечивают только 10-15 % энергопотребления организма.

Мочевина — основной конечный продукт распада белков и нуклеиновых кислот. В процессе катаболизма белков и нуклеиновых кислот, в частности при дезаминировании аминокислот, в тканях организма образуется свободный аммиак (NН3), а также кетокислоты и другие вещества.

Свободный аммиак — токсичное для организма человека вещество, особенно для мозга. Токсичность его связана с возможным локальным изменением рН в отдельных частях клетки или заряда на клеточной мембране. Поэтому в организме существует несколько механизмов связывания и обезвреживания свободного аммиака. Непосредственное связывание аммиака в тканях, где он образуется, осуществляется с участием глутаминовой и аспарагиновой аминокислот, которые превращаются в амиды — глутамин и аспарагин. Реакция связывания требует энергии АТФ и катализируется глутамин- или аспарагинсинтетазами.

Амиды являются временной формой обезвреживания аммиака. Они легко проникают через клеточные мембраны и доставляют аммиак в печень. В печени глутамин легко превращается в глутаминовую кислоту и свободный аммиак. Доставленный в печень аммиак обезвреживается в процессе синтеза мочевины. Часть свободного аммиака в клетках связывается в процессе образования новых аминокислот.

Процесс синтеза мочевины — сложный ферментативный цикл, начинающийся с реакции, в которой участвует аминокислота орнитин, поэтому он называется орнитиновым циклом. Цикл включает 5 основных реакций.

Первой реакцией является взаимодействие молекул свободного аммиака (NН3) и углекислого газа (СО2) с участием АТФ. В ходе этой реакции образуется высокоэнергетический карбамилфосфат , который далее вступает во взаимодействие с аминокислотой орнитин с образованием цитрулина и фосфорной кислоты. Эти реакции протекают в митохондриях. Образовавшийся цитрулин из митохондрий поступает в цитоплазму, где взаимодействует с молекулой аспарагиновой кислоты (аспартат), которая поставляет вторую аминогруппудля синтеза мочевины. В этой реакции используется энергия молекулы АТФ и образуется сложное вещество — аргининоянтарная кислота (аргининосукцинат). Аргининоянтарная кислота ферментативно расщепляется на фумаровую кислоту (фумарат) и аргинин. Аргинин под действием высокоспецифического фермента аргиназы расщепляется на мочевину и орнитин. Образовавшийся орнитин может вступать во взаимодействие с новой молекулой карбамилфосфата, а мочевина выводится из организма. Суммарное уравнение синтеза мочевины имеет вид

Читайте так же:  Аргинин как правильно принимать мужчинам

Мочевина является основным конечным продуктом обмена белков и других азотсодержащих веществ. С мочевиной выводится около 10-18 г общего азота организма человека, тогда как с аминокислотами — до 1,15 г, амминийными солями — до 1 г, креатином -до 0,8 г, мочевой кислотой — до 0,2 г. Мочевина из печени поступает в кровь, затем в почки и выводится с мочой.

Содержание мочевины в норме в крови взрослых людей индивидуально и составляет 3,5-6,5 ммоль • л (20-30 мг%). По изменению ее содержания в крови диагностируют скорость процесса распада тканевых белков. В практике спорта мочевина широко используется как биохимический показатель процессов восстановления в организме после физических нагрузок.

Обмен белков. Переваривание и всасывание белков.

Белки – обязательный компонент сбалансированного пищевого рациона.

Главными источниками белков для организма являются пищевые продукты растительного и животного происхождения. Переваривание белков в организме происходит с участием протеолитических ферментов желудочно-кишечного тракта. Протеолиз – гидролиз белков. Протеолитические ферменты – ферменты, осуществляющие гидролиз белков. Данные ферменты подразделяются на две группы – экзопепетидазы, катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы, катализирующие гидролиз пептидных связей внутри полипептидной цепи.

В ротовой полости расщепления белков не происходит из-за отсутствия протеолитических ферментов. В желудке имеются все условия для переваривания белков. Протеолитические ферменты желудка – пепсин, гастриксин – проявляют максимальную каталитическую активность в сильно кислой среде. Кислая среда создается желудочным соком (рН = 1,0–1,5), который вырабатывается обкладочными клетками слизистой оболочки желудка и в качестве основного компонента содержит соляную кислоту. Под действием соляной кислоты желудочного сока происходит частичная денатурация белка, набухание белков, что приводит к распаду его третичной структуры. Кроме того, соляная кислота переводит неактивный профермент пепсиноген (вырабатывается в главных клетках слизистой оболочки желудка) в активный пепсин. Пепсин

катализирует гидролиз пептидных связей, образованных остатками ароматических и дикарбоновых аминокислот (оптимум рН = 1,5–2,5). Слабее проявляется протеолитическое действие пепсина на белки соединительной ткани (коллаген, эластин). Не расщепляются пепсином протамины, гистоны, мукопротеины и кератины (белки шерсти и волос).

По мере переваривания белковой пищи с образованием продуктов гидролиза щелочного характера рН желудочного сока изменяется до 4,0. С уменьшением кислотности желудочного сока проявляется деятельность другого протеолитического фермента – гастриксина

(оптимум рН= 3,5–4,5).

В желудочном соке детей обнаружен химозин (реннин), расщепляющий казеиноген молока.

Дальнейшее переваривание полипептидов (образовавшихся в желудке) и нерасщепившихся белков пищи осуществляется в тонком кишечнике под действием ферментов панкреатического и кишечного соков. Протеолитические ферменты кишечника – трипсин, химотрипсин – поступают с панкреатическим соком. Оба фермента наиболее активны в слабощелочной среде (7,8–8,2), что соответствует рН тонкого кишечника. Профермент трипсина – трипсиноген, активатор – энтерокиназа (вырабатывается стенками кишечника) или ранее образованный трипсин. Трипсин

[2]

гидролизует пептидные связи, образованные арг и лиз. Профермент химотрипсина – химотрипсиноген, активатор – трипсин. Химотрипсин расщепляет пептидные связи между ароматическими амк, а также связи, которые не были гидролизованы трипсином.

Благодаря гидролитическому действию на белки эндопептидаз (пепсин, трипсин, химотрипсин) образуются пептиды различной длины и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов – экзопептидаз. Одни из них – карбоксипептидазы – синтезируются в поджелудочной железе в виде прокарбоксипептидазы, активируются трипсином в кишечнике, отщепляют аминокислоты с С-конца пептида; другие – аминопептидазы – синтезируются в клетках слизистой оболочки кишечника, активируются трипсином, отщепляют аминокислоты с N – конца.

Оставшиеся низкомолекулярные пептиды (2–4 аминокислотных остатка) расщепляются тетра-, три- и дипептидазами в клетках слизистой оболочки кишечника.

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Расщепление белков в пищеварительном тракте

«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни. Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей. Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен .

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота. У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его количество, поступающее в составе белков. Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми . Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми . Они должны регулярно поступать с пищей. Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными .

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д. С учетом этих факторов разработаны нормы белкового питания. Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Читайте так же:  Изотоник для чего он нужен в спорте

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ).

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его последующее расщепление. В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин .

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин , оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку. В эту часть пищеварительного канала поступают из поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка. Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение .

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена . Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са 2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин .

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин. Действие химотрипсина подобно действию трипсина. Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению. Этот процесс осуществляют карбоксипептидазы, аминопептидазы . Эти ферменты относятся к металлоферментам. Они активируются двухвалентными ионами: Mg 2+ , Mn 2+ , Со 2+ , которые играют важную роль в формировании фермент-субстратного комплекса.

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу. Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами . В соке поджелудочной железы присутствует фермент эластаза . Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Видео (кликните для воспроизведения).

Следующая вторая статья из цикла «Обмен белков в организме человека» — « Обезвреживание продуктов гниения белков в кишечнике ». Третья статья « Обмен аминокислот в тканях »

Источники


  1. Ланькова, Т.В. Врачевание питанием, здоровье и долголетие / Т.В. Ланькова, В.В. Ланьков. — М.: АСТ, 1999. — 400 c.

  2. Стрельникова, Наталья Еда, которая лечит диабет / Наталья Стрельникова. — М.: Веды, 2009. — 256 c.

  3. Красикова, И. С. Гимнастика для ленивых / И.С. Красикова. — М.: Корона Принт, 2003. — 144 c.
  4. Дубровский, В. И. Спортивная медицина / В.И. Дубровский. — М.: Владос, 2005. — 62 c.
Расщепление белков до пептидов и аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here