Синтез атф из аминокислот

Сегодня предлагаем ознакомится со статьей на тему: синтез атф из аминокислот с профессиональным описанием и объяснением.

Пути использования аминокислот в организме

Основные пути использования аминокислот в клетках организма представлены на рис. 51.

Рис. 51. Пути использования аминокислот в клетках организма

Главный путь использования аминокислот – синтез специфических для организма белков: структурных, сократительных, белков-ферментов, гормонов белковой природы взамен распадающихся. Скорость обновления тканевых белков достаточно высока. Так период полураспада белков печени составляет около 9 суток, белков мышечной ткани около 120 суток.

Другой важнейший путь использования аминокислот – синтез различных биологически активных веществ. Даже если исключить из этой группы белки-ферменты и гормоны белковой природы, перенеся их в группу белков, останется достаточно многочисленная группа веществ: гормонов-полипептидов, гормонов — производных аминокислот и ряд других соединений, выполняющих в организме преимущественно регуляторные функции.

Часть аминокислот (и поступивших из пищеварительной системы, и образовавшихся при распаде тканевых белков) используется в качестве источника энергии. Некоторое количество аминокислот может превращаться в углеводы, в липиды. Хотя последнее наиболее вероятно при поступлении в организм избыточного количества белка. Еще один очень важный путь использования аминокислот – синтез заменимых аминокислот. Рассмотрим важнейшие пути использования аминокислот в клетках организма.

Синтез белков

Синтез белка это сложный многоступенчатый процесс, основными этапами которого являются транскрипция, активация аминокислот и трансляция. Рассмотрим основные этапы синтеза белка.

Транскрипция.

Специфика того или иного белка определяется набором аминокислот и порядком их соединения в белковой молекуле. Набор аминокислот и порядок их соединения закодирован в молекуле ДНК с помощью последовательности нуклеотидов. Каждая аминокислота кодируется тремя расположенными рядом нуклеотидами – триплетами или кодонами. Главным отличительным свойством различных нуклеотидов являются входящие в их состав азотистые основания, которых в ДНК встречается четыре вида: аденин, гуанин, тимин и цитозин. Сочетаниями из трех азотистых оснований можно образовать 64 различных триплета.

Молекулы ДНК находятся в ядре и не принимают непосредственного участия в синтезе белка. Информация о последовательности аминокислот в той или иной молекуле белка передается от ДНК к местам синтеза с помощью информационной РНК (и-РНК). Транскрипция — это процесс синтеза и-РНК на участке ДНК, несущем информацию о последовательности аминокислот в конкретной молекуле белка. Такой участок ДНК называется геном или цистроном.

Транскрипция начинается с разрыва водородных связей между двумя комплементарными цепями ДНК с помощью фермента ДНК-полимеразы. Затем происходит раскручивание спирали ДНК на участке, несущем нужную для синтеза белка информацию. Завершается транскрипция синтезом и-РНК при участии фермента РНК-полимеразы. В результате информация о последовательности аминокислот в белковой молекуле переносится в и-РНК. И-РНК выходит из ядра в цитоплазму и присоединяется к рибосоме.

Активация аминокислот

. В синтезе белка участвуют активные аминокислоты. Активация аминокислот начинается с их взаимодействия с АТФ, в результате которого образуется макроэргический комплекс аминокислоты (Ак) с АМФ (аминоациладенилат — Ак

АМФ) и неорганический пирофосфат (ФФн):

Затем происходит взаимодействие активированной аминокислоты с соответствующей данной аминокислоте транспортной РНК (т-РНК) с образованием макроэргического комплекса аминокислоты с т-РНК (аминоацил

Реакция катализируется ферментом аминоацил-т-РНК-синтетазой. Этот этап синтеза белка получил название рекогниции..

Транспортные РНК представляют собой сравнительно небольшие молекулы, состоящие из 80-100 нуклеотидов. Каждой аминокислоте соответствует от одной до шести видов т-РНК, с которыми она может образовывать комплекс. Транспортные РНК имеют два специфических триплета. Один из них кодон, к которому присоединяется аминокислота, другой – антикодон, который может присоединяться к кодону соответствующей аминокислоты в и-РНК по принципу комплементарности. Роль т-РНК сводится не только к доставке аминокислот к местам синтеза белка – рибосомам, но и переводу информации с последовательности нуклеотидов на последовательность аминокислот.

Трансляция

. Непосредственный синтез белка (трансляция) осуществляется на особых внутриклеточных образованиях, называемых рибосомами. Рибосомы построены из нуклеопротеинов, содержащих примерно 60% РНК и 40% различных белков. Они обеспечивают считывание генетической информации с и-РНК и реализацию ее в последовательности аминокислот в синтезируемой молекуле белка. Рибосомы обладают ферментативными свойствами, катализируя образование пептидных связей между аминокислотами. В процессе синтеза белка молекула и-РНК передвигается между двумя субъединицами рибосомы, к одной из которых присоединяется специфический белоксинтезирующий фермент (пептидилтрансфераза). В процессе этого перемещения кодоны и-РНК взаимодействуют с антикодонами т-РНК. При этом белоксинтезирующий фермент катализирует присоединение аминокислотного остатка т-РНК к полипептидной цепи. Образование и удлинение полипептидной цепи на рибосоме (элонгация) происходит с затратой энергии, источником которой является макроэргическое соединение гуанинтрифосфат (ГТФ).

Завершение синтеза белка (терминация) обеспечивается специальными кодонами в и-РНК (стоп-сигналами), которые не используются для кодирования аминокислот. Уже в процессе синтеза белка формируется первичная (последовательность аминокислот) и вторичная структура белковой молекулы. После завершения синтеза и отделения полипептидной цепи от рибосомы происходит формирование третичной и четвертичной структуры белка. В формировании третичной и четвертичной структуры белка участвуют дополнительные внутриклеточные органеллы (аппарат Гольджи).

Синтеза белка — энергоемкий процесс. Присоединение к полипептидной цепи одной аминокислоты требует затраты по меньшей мере пяти молекул АТФ. При активации аминокислоты АТФ распадается до АМФ, что эквивалентно затрате двух молекул АТФ. На этап трансляции затрачивается одна молекула ГТФ. В процессе элонгации расходуются две молекулы ГТФ на каждую присоединяемую к цепи аминокислоту. И, наконец, терминация (завершение синтеза) требует затраты еще одной молекулы ГТФ.

Ресинтез ГТФ происходит в реакции ГДФ с АТФ:

ГДФ + АТФ = ГТФ + АДФ

Следовательно, одним из важнейших условий синтеза белка является возможность обеспечения этого процесса достаточным количеством энергии.

Аминокислоты, не использованные для синтеза белка, подвергаются различным превращениям, которые, в большинстве своем начинаются с реакций трех типов: декарбоксилирования, трансаминирования, дезаминирования.

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

Урок 19. Химическое строение и биологическая роль АТФ

Оборудование: таблицы по общей биологии, схема строения молекулы АТФ, схема взаимосвязи пластического и энергетического обменов.

I. Проверка знаний

Проведение биологического диктанта «Органические соединения живой материи»

Учитель читает тезисы под номерами, учащиеся записывают в тетрадь номера тех тезисов, которые подходят по содержанию их варианту.

Вариант 1 – белки.
Вариант 2 – углеводы.
Вариант 3 – липиды.
Вариант 4 – нуклеиновые кислоты.

1. В чистом виде состоят только из атомов С, Н, О.

Читайте так же:  5 грамм креатина это сколько чайных ложек

2. Кроме атомов С, Н, О содержат атомы N и обычно S.

3. Кроме атомов С, Н, О содержат атомы N и Р.

4. Обладают относительно небольшой молекулярной массой.

5. Молекулярная масса может быть от тысяч до нескольких десятков и сотен тысяч дальтон.

6. Наиболее крупные органические соединения с молекулярной массой до нескольких десятков и сотен миллионов дальтон.

7. Обладают различными молекулярными массами – от очень небольшой до весьма высокой, в зависимости от того, является ли вещество мономером или полимером.

8. Состоят из моносахаридов.

9. Состоят из аминокислот.

10. Состоят из нуклеотидов.

11. Являются сложными эфирами высших жирных кислот.

12. Основная структурная единица: «азотистое основание–пентоза–остаток фосфорной кислоты».

13. Основная структурная единица: «аминокислот».

14. Основная структурная единица: «моносахарид».

15. Основная структурная единица: «глицерин–жирная кислота».

16. Молекулы полимеров построены из одинаковых мономеров.

17. Молекулы полимеров построены из сходных, но не вполне одинаковых мономеров.

18. Не являются полимерами.

19. Выполняют почти исключительно энергетическую, строительную и запасающую функции, в некоторых случаях – защитную.

20. Помимо энергетической и строительной выполняют каталитическую, сигнальную, транспортную, двигательную и защитную функции;

21. Осуществляют хранение и передачу наследственных свойств клетки и организма.

Вариант 1 – 2; 5; 9; 13; 17; 20.
Вариант 2 – 1; 7; 8; 14; 16; 19.
Вариант 3 – 1; 4; 11; 15; 18; 19.
Вариант 4 – 3; 6; 10; 12; 17; 21.

II. Изучение нового материала

1. Строение аденозинтрифосфорной кислоты

Кроме белков, нуклеиновых кислот, жиров и углеводов в живом веществе синтезируется большое количество других органических соединений. Среди них важнуую роль в биоэнергетике клетки играет аденозинтрифосфорная кислота (АТФ). АТФ содержится во всех клетках растений и животных. В клетках чаще всего аденозинтрифосфорная кислота присутствует в виде солей, называемых аденозинтрифосфатами. Количество АТФ колеблется и в среднем составляет 0,04% (в клетке в среднем находится около 1 млрд молекул АТФ). Наибольшее количество АТФ содержится в скелетных мышцах (0,2–0,5%).

Молекула АТФ состоит из азотистого основания – аденина, пентозы – рибозы и трех остатков фосфорной кислоты, т.е. АТФ – особый адениловый нуклеотид. В отличие от других нуклеотидов АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам – веществам, содержащим в своих связях большое количество энергии.

Пространственная модель (А) и структурная формула (Б) молекулы АТФ

Из состава АТФ под действием ферментов АТФаз отщепляется остаток фосфорной кислоты. АТФ имеет устойчивую тенденцию к отделению своей концевой фосфатной группы:

АТФ 4– + Н2О ––> АДФ 3– + 30,5 кДж + Фн,

т.к. это приводит к исчезновению энергетически невыгодного электростатического отталкивания между соседними отрицательными зарядами. Образовавшийся фосфат стабилизируется за счет образования энергетически выгодных водородных связей с водой. Распределение заряда в системе АДФ + Фн становится более устойчивым, чем в АТФ. В результате этой реакции высвобождается 30,5 кДж (при разрыве обычной ковалентной связи высвобождается 12 кДж).

Для того, чтобы подчеркнуть высокую энергетическую «стоимость» фосфорно-кислородной связи в АТФ, ее принято обозначать знаком

и называть макроэнергетической связью. При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорная кислота). Отщепление третьего фосфата сопровождается выделением всего 13,8 кДж, так что собственно макроэргических связей в молекуле АТФ только две.

2. Образование АТФ в клетке

Запас АТФ в клетке невелик. Например, в мышце запасов АТФ хватает на 20–30 сокращений. Но ведь мышца способна работать часами и производить тысячи сокращений. Поэтому наряду с распадом АТФ до АДФ в клетке должен непрерывно идти обратный синтез. Существует несколько путей синтеза АТФ в клетках. Познакомимся с ними.

1. Анаэробное фосфорилирование. Фосфорилированием называют процесс синтеза АТФ из АДФ и низкомолекулярного фосфата (Фн). В данном случае речь идет о бескислородных процессах окисления органических веществ (например, гликолиз – процесс бескислородного окисления глюкозы до пировиноградной кислоты). Примерно 40% выделяемой в ходе этих процессов энергии (около 200 кДж/моль глюкозы), расходуется на синтез АТФ, а остальная часть рассеивается в виде тепла:

2. Окислительное фосфорилирование – это процесс синтеза АТФ за счет энергии окисления органических веществ кислородом. Этот процесс был открыт в начале 1930-х гг. XX в. В.А. Энгельгардтом. Кислородные процессы окисления органических веществ протекают в митохондриях. Примерно 55% выделяющейся при этом энергии (около 2600 кДж/моль глюкозы) превращается в энергию химических связей АТФ, а 45% рассеивается в виде тепла.

Окислительное фосфорилирование значительно эффективнее анаэробных синтезов: если в процессе гликолиза при распаде молекулы глюкозы синтезируется всего 2 молекулы АТФ, то в ходе окислительного фосфорилирования образуется 36 молекул АТФ.

3. Фотофосфорилирование – процесс синтеза АТФ за счет энергии солнечного света. Этот путь синтеза АТФ характерен только для клеток, способных к фотосинтезу (зеленые растения, цианобактерии). Энергия квантов солнечного света используется фотосинтетиками в световую фазу фотосинтеза для синтеза АТФ.

3. Биологическое значение АТФ

АТФ находится в центре обменных процессов в клетке, являясь связующим звеном между реакциями биологического синтеза и распада. Роль АТФ в клетке можно сравнить с ролью аккумулятора, так как в ходе гидролиза АТФ выделяется энергия, необходимая для различных процессов жизнедеятельности («разрядка»), а в процессе фосфорилирования («зарядка») АТФ вновь аккумулирует в себе энергию.

Схема гидролиза АТФ

За счет выделяющейся при гидролизе АТФ энергии происходят почти все процессы жизнедеятельности в клетке и организме: передача нервных импульсов, биосинтез веществ, мышечные сокращения, транспорт веществ и др.

III. Закрепление знаний

Решение биологических задач

Задача 1.

При быстром беге мы часто дышим, происходит усиленное потоотделение. Объясните эти явления.

Задача 2. Почему на морозе замерзающие люди начинают притопывать и подпрыгивать?

Задача 3. В известном произведении И.Ильфа и Е.Петрова «Двенадцать стульев» среди многих полезных советов можно найти и такой: «Дышите глубже, вы взволнованы». Попробуйте обосновать этот совет с точки зрения происходящих в организме энергетических процессов.

IV. Домашнее задание

Начать подготовку к зачету и контрольной работе (продиктовать вопросы зачета – см. урок 21).

Урок 20. Обобщение знаний по разделу «Химическая организация жизни»

Оборудование: таблицы по общей биологии.

Читайте так же:  Вреден ли л карнитин для здоровья

I. Обобщение знаний раздела

Работа учащихся с вопросами (индивидуально) с последующими проверкой и обсуждением

1. Приведите примеры органических соединений, в состав которых входят углерод, сера, фосфор, азот, железо, марганец.

2. Как по ионному составу можно отличить живую клетку от мертвой?

3. Какие вещества находятся в клетке в нерастворенном виде? В какие органы и ткани они входят?

4. Приведите примеры макроэлементов, входящих в активные центры ферментов.

5. Какие гормоны содержат микроэлементы?

6. Какова роль галогенов в организме человека?

7. Чем белки отличаются от искусственных полимеров?

8. Чем отличаются пептиды от белков?

9. Как называется белок, входящий в состав гемоглобина? Из скольких субъединиц он состоит?

[2]

10. Что такое рибонуклеаза? Сколько аминокислот входит в ее состав? Когда она была синтезирована искусственно?

11. Почему скорость химических реакций без ферментов мала?

12. Какие вещества транспортируются белками через клеточную мембрану?

13. Чем отличаются антитела от антигенов? Содержат ли вакцины антитела?

14. На какие вещества распадаются белки в организме? Сколько энергии выделяется при этом? Где и как обезвреживается аммиак?

15. Приведите пример пептидных гормонов: как они участвуют в регуляции клеточного метаболизма?

16. Какова структура сахара, с которым мы пьем чай? Какие еще три синонима этого вещества вы знаете?

17. Почему жир в молоке не собирается на поверхности, а находится в виде суспензии?

18. Какова масса ДНК в ядре соматической и половой клеток?

19. Какое количество АТФ используется человеком в сутки?

20. Из каких белков люди изготавливают одежду?

Первичная структура панкреатической рибонуклеазы (124 аминокислоты)

II. Домашнее задание.

Продолжить подготовку к зачету и контрольной работе по разделу «Химическая организация жизни».

Урок 21. Зачетный урок по разделу «Химическая организация жизни»

I. Проведение устного зачета по вопросам

1. Элементарный состав клетки.

2. Характеристика органогенных элементов.

3. Структура молекулы воды. Водородная связь и ее значение в «химии» жизни.

4. Свойства и биологические функции воды.

5. Гидрофильные и гидрофобные вещества.

6. Катионы и их биологическое значение.

7. Анионы и их биологическое значение.

8. Полимеры. Биологические полимеры. Отличия периодических и непериодических полимеров.

9. Свойства липидов, их биологические функции.

Видео удалено.
Видео (кликните для воспроизведения).

10. Группы углеводов, выделяемые по особенностям строения.

11. Биологические функции углеводов.

12. Элементарный состав белков. Аминокислоты. Образование пептидов.

13. Первичная, вторичная, третичная и четвертичная структуры белков.

14. Биологические функция белков.

15. Отличия ферментов от небиологических катализаторов.

16. Строение ферментов. Коферменты.

17. Механизм действия ферментов.

18. Нуклеиновые кислоты. Нуклеотиды и их строение. Образование полинуклеотидов.

19. Правила Э.Чаргаффа. Принцип комплементарности.

20. Образование двухцепочечной молекулы ДНК и ее спирализация.

21. Классы клеточной РНК и их функции.

22. Отличия ДНК и РНК.

23. Репликация ДНК. Транскрипция.

24. Строение и биологическая роль АТФ.

25. Образование АТФ в клетке.

II. Домашнее задание

Продолжить подготовку к контрольной работе по разделу «Химическая организация жизни».

Урок 22. Контрольный урок по разделу «Химическая организация жизни»

I. Проведение письменной контрольной работы

1. Имеются три вида аминокислот – А, В, С. Сколько вариантов полипептидных цепей, состоящих из пяти аминокислот, можно построить. Укажите эти варианты. Будут ли эти полипептиды обладать одинаковыми свойствами? Почему?

2. Все живое в основном состоит из соединений углерода, а аналог углерода – кремний, содержание которого в земной коре в 300 раз больше, чем углерода, встречается лишь в очень немногих организмах. Объясните этот факт с точки зрения строения и свойств атомов этих элементов.

3. В одну клетку ввели молекулы АТФ, меченные радиоактивным 32Р по последнему, третьему остатку фосфорной кислоты, а в другую – молекулы АТФ, меченные 32Р по первому, ближайшему к рибозе остатку. Через 5 минут в обеих клетках померили содержание неорганического фосфат-иона, меченного 32Р. Где оно окажется значительно выше?

4. Исследования показали, что 34% общего числа нуклеотидов данной иРНК приходится на гуанин, 18% – на урацил, 28% – на цитозин и 20% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

1. Жиры составляют «первый резерв» в энергетическом обмене и используются, когда исчерпан резерв углеводов. Однако в скелетных мышцах при наличии глюкозы и жирных кислот в большей степени используются последние. Белки же в качестве источника энергии всегда используются лишь в крайнем случае, при голодании организма. Объясните эти факты.

2. Ионы тяжелых металлов (ртути, свинца и др.) и мышьяка легко связываются сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при соединении с этими металлами. Почему тяжелые металлы являются ядами для организма?

3. В реакции окисления вещества А в вещество В освобождается 60 кДж энергии. Сколько молекул АТФ может быть максимально синтезировано в этой реакции? Как будет израсходована остальная энергия?

4. Исследования показали, что 27% общего числа нуклеотидов данной иРНК приходится на гуанин, 15% – на урацил, 18% – на цитозин и 40% – на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

Два способа синтеза АТФ

Читайте также:

  1. Автозамена и Автотекст — это два разных способа автоматической вставки элементов.
  2. Аксиома 7. Компетентность людей в мире опасностей и способах защиты от них – необходимое условие достижения безопасности жизнедеятельности.
  3. Алгебраические методы синтеза
  4. В зависимости от способа исполнения
  5. В тканях аминокислоты используются для синтеза белков и различных биологически активных в-в или вступают в реакции катаболизма.
  6. Вещества, необходимые для синтеза эритроцитов
  7. Вещества, необходимые для синтеза эритроцитов
  8. ВЫБОР СПОСОБА УПРАВЛЕНИЯ МНОГОКВАРТИРНЫМ ДОМОМ
  9. Горячая плазма и проблема управляемого термоядерного синтеза.
  10. Два способа алгоритмической организации
  11. ДВА СПОСОБА ДЕЙСТВОВАНИЯ И ПРОИЗВОЛЕНИЯ В ИИСУСЕ ХРИСТЕ
  12. Два способа организации файловых операций

Способы получения энергии в клетке

Кругооборот АТФ в жизни клетки

Роль АТФ

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемыхмакроэргическими. Основной и универсальной молекулой, которая запасает энергию и при необходимости отдает ее, является АТФ.

Все молекулы АТФ в клетке непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют.

Читайте так же:  Заболевания связанные с недостатком аргинина

Существует три основных способа использованияАТФ

· транспорт веществ через мембраны,

· изменение формы клетки и ее движение.

Эти процессы вкупе с процессом образованияАТФ получили название АТФ-цикл:

Откуда в клетке АТФ?

В клетке существуют четыре основных процесса, обеспечивающих высвобождение энергии из химических связей при окислении веществ и ее запасание:

1. Гликолиз(2 этап биологического окисления) – окисление молекулы глюкозы до двух молекул пировиноградной кислоты, при этом образуется 2 молекулы АТФи НАДН. Далее пировиноградная кислота в аэробных условиях превращается в ацетил-SКоА, в анаэробных условиях – в молочную кислоту.

2. β-Окисление жирных кислот (2 этап биологического окисления) – окисление жирных кислот до ацетил-SКоА, здесь образуются молекулы НАДНи ФАДН2. Молекулы АТФ «в чистом виде» не появляются.

3. Цикл трикарбоновых кислот (ЦТК, 3 этап биологического окисления) – окисление ацетильной группы (в составе ацетил-SКоА) или иных кетокислот до углекислого газа. Реакции полного цикла сопровождаются образованием 1 молекулы ГТФ(что эквивалентно одной АТФ), 3 молекул НАДНи 1 молекулы ФАДН2.

4. Окислительное фосфорилирование (3 этап биологического окисления) – окисляются НАДН и ФАДН2, полученные в реакциях катаболизма глюкозы, аминокислот и жирных кислот. При этом ферменты дыхательной цепи на внутренней мембране митохондрий обеспечивают образование большейчасти клеточного АТФ.

Основным способом получения АТФ в клетке является окислительное фосфорилирование, протекающее в структурах внутренней мембраны митохондрий. При этом энергия атомов водорода молекул НАДН и ФАДН2, образованных в гликолизе, ЦТК, окислении жирных кислот, преобразуется в энергию связей АТФ.

Однако также есть другой способ фосфорилирования АДФ до АТФ – субстратное фосфорилирование. Этот способ связан с передачей макроэргического фосфата или энергии макроэргической связи какого-либо вещества (субстрата) на АДФ. К таким веществам относятся метаболиты гликолиза (1,3-дифосфоглицериновая кислота, фосфоенолпируват), цикла трикарбоновых кислот (сукцинил-SКоА) икреатинфосфат. Энергия гидролиза их макроэргической связи выше, чем 7,3 ккал/моль в АТФ, и роль указанных веществ сводится к использованию этой энергии для фосфорилирования молекулы АДФ до АТФ.

Дата добавления: 2014-01-11 ; Просмотров: 491 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Аминокислоты могут идти на синтез АТФ

Поскольку в организме присутствует 20 протеиногенных и еще больше непротеиногенных аминокислот, которые отличаются друг от друга строением бокового радикала, то существует аналогичное количество специфических путей для катаболизма этого радикала. В дальнейшем все эти пути сливаются и сходятся к шести продуктам, которые вступают в ЦТК и здесь полностью окисляютсядо углекислого газа и воды с выделением энергии. Из общего количества энергии, образующейся в организме, на долю аминокислот обычно приходится около 10%.

Дата добавления: 2015-06-27 ; просмотров: 939 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Синтез атф из аминокислот

На рисунке представлены два способа изображения структуры АТФ. Аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ) относятся к классу соединений, называемых нуклеогидами. Молекула нук-леотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты. В молекуле АМФ сахар представлен рибо-зой, а основание — аденином. В молекуле АДФ две фосфатные группы, а в молекуле АТФ — три.

Значение АТФ

При расщеплении АТФ на АДФ и неорганический фосфат (Фн) высвобождается энергия:

[3]

Реакция идет с поглощением воды, т. е. представляет собой гидролиз (в нашей статье мы много раз встречались с этим весьма распространенным типом биохимических реакций). Отщепившаяся от АТФ третья фосфатная группа остается в клетке в виде неорганического фосфата (Фн). Выход свободной энергии при этой реакции составляет 30,6 кДж на 1 моль АТФ.

Из АДФ и фосфата может быть вновь синтезирован АТФ, но для этого требуется затратить 30,6 кДж энергии на 1 моль вновь образованного АТФ.

В этой реакции, называемой реакцией конденсации, вода выделяется. Присоединение фосфата к АДФ называется реакцией фосфорилирования. Оба приведенных выше уравнения можно объединить:

Катализирует данную обратимую реакцию фермент, называемый АТФазой.

Всем клеткам, как уже было сказано, для выполнения их работы необходима энергия и для всех клеток любого организма источником этой энергии служит АТФ. Поэтому АТФ называют «универсальным носителем энергии» или «энергетической валютой» клеток. Подходящей аналогией служат электрические батарейки. Вспомните, для чего только мы их не используем. Мы можем получать с их помощью в одном случае свет, в другом звук, иногда механическое движение, а иногда нам нужна от них собственно электрическая энергия. Удобство батареек в том, что один и тот же источник энергии — батарейку — мы можем использовать для самых разных целей в зависимости от того, куда мы ее поместим. Эту же роль играет в клетках АТФ. Он поставляет энергию для таких различных процессов, как мышечное сокращение, передача нервных импульсов, активный транспорт веществ или синтез белков, и для всех прочих видов клеточной активности. Для этого он должен быть просто «подключен» к соответствующей части аппарата клетки.

Аналогию можно продолжить. Батарейки требуется сначала изготовить, а некоторые из них (аккумуляторные) так же, как и АТФ, можно перезарядить. При изготовлении батареек на фабрике в них должно быть заложено (и тем самым израсходовано фабрикой) определенное количество энергии. Для синтеза АТФ тоже требуется энергия; источником ее служит окисление органических веществ в процессе дыхания. Поскольку для фосфорилирования АДФ энергия высвобождается в процессе окисления, такое фосфорилирование называют окислительным. При фотосинтезе АТФ образуется за счет световой энергии. Этот процесс называют фотофос-форилированием (см. разд. 7.6.2). Есть в клетке и «фабрики», производящие большую часть АТФ. Это митохондрии; в них размешаются химические «сборочные линии», на которых образуется АТФ в процессе аэробного дыхания. Наконец, в клетке происходит и перезарядка разрядившихся «аккумуляторов»: после того как АТФ, высвободив заключенную в нем энергию, превратится в АДФ и Фн, он может быть вновь быстро синтезирован из АДФ и Фн за счет энергии, полученной в процессе дыхания от окисления новой порции органических веществ.

Количество АТФ в клетке в любой данный момент очень невелико. Поэтому в АТФ следует видеть только носителя энергии, а не ее депо. Для длительного хранения энергии служат такие вещества, как жиры или гликоген. Клетки весьма чувствительны к уровню АТФ. Как только скорость его использования возрастает, одновременно возрастает и скорость процесса дыхания, поддерживающего этот уровень.

Читайте так же:  Протеины кератин для волос

Роль АТФ в качестве связующего звена между клеточным дыханием и процессами, идущими с потреблением энергии, видна из рисунка Схема эта выглядит простой, но она иллюстрирует очень важную закономерность.

Можно, таким образом, сказать, что в целом функция дыхания заключается в том, чтобы вырабатывать АТФ.

Суммируем вкратце сказанное выше.
1. Для синтеза АТФ из АДФ и неорганического фосфата требуется 30,6 кДж энергии на 1 моль АТФ.
2. АТФ присутствует во всех живых клетках и является, следовательно, универсальным носителем энергии. Другие носители энергии не используются. Это упрощает дело — необходимый клеточный аппарат может быть более простым и работать более эффективно и экономно.
3. АТФ легко доставляет энергию в любую часть клетки к любому нуждающемуся в энергии процессу.
4. АТФ быстро высвобождает энергию. Для этого требуется всего лишь одна реакция — гидролиз.
5. Скорость воспроизводства АТФ из АДФ и неорганического фосфата (скорость процесса дыхания) легко регулируется в соответствии с потребностями.
6. АТФ синтезируется во время дыхания за счет химической энергии, высвобождаемой при окислении таких органических веществ, как глюкоза, и во время фотосинтеза — за счет солнечной энергии. Образование АТФ из АДФ и неорганического фосфата называют реакцией фос-форилирования. Если энергию для фос-форилирования поставляет окисление, то говорят об окислительном фосфорилиро-вании (этот процесс протекает при дыхании), если же для фосфорилирования используется световая энергия, то процесс называют фотофосфорилированием (это имеет место при фотосинтезе).

Синтез атф из аминокислот

В предшествующих статьях мы указывали, что углеводы, жиры и белки могут использоваться клетками для синтеза большого количества аденозинтрифосфата, который является источником энергии практически для всех клеточных функций. По этой причине АТФ можно считать «энергетической валютой» процессов метаболизма клеток, которые могут осуществляться только посредством АТФ (или схожего вещества, отличающегося от АТФ нуклеотидом, — гуанозинтрнфосфага). Информация о свойствах АТФ приведена в главе 2.

Особенностью АТФ, делающей его чрезвычайно важным в процессах энергообеспечения, является выделение большого количества свободной энергии (около 7300 калории, или 7,3 Ккал на 1 моль в стандартных условиях, или более 12000 калорий в физиологических условиях), приходящейся на каждую из двух макроэргических фосфатных связей. Количество энергии, выделяемой при распаде каждой макроэргической связи АТФ, достаточно для обеспечения каждого этапа любой химической реакции, которая осуществляется в организме. Некоторые химические реакции, для которых требуется энергия АТФ, используют всего лишь несколько сотен калорий из наличных 12000, а остальная энергия рассеивается в виде тепла.

АТФ образуется при окислении углеводов, жиров и белков. В предыдущих статьях мы говорили о преобразовании энергии, присутствующей в питательных веществах, в энергию АТФ. Если говорить кратко, то АТФ образуется при следующих условиях.

1. Окисление углеводов, главным образом глюкозы, и окисление других Сахаров, но в меньшем количестве, например окисление фруктозы; эти процессы наблюдаются в цитоплазме клеток при анаэробных процессах гликолиза и в митохондриях при аэробном окислении в цикле лимонной кислоты (цикле Кребса).
2. Окисление жирных кислот в митохондриях клеток при бета-окислении.
3. Окисление белков, которые предварительно должны гидролизоваться до аминокислот с последующим расщеплением аминокислот до промежуточных продуктов цикла лимонной кислоты и затем — до ацетил-КоА и углекислого газа.

АТФ — источник энергии для синтеза наиболее важных компонентов клетки. К наиболее важным процессам, требующим энергии АТФ, относится образование пептидных связей между молекулами аминокислот в связи с синтезом белков. В зависимости от вида вступающих в реакцию аминокислот в каждой образующейся пептидной связи заключаются от 500 до 5000 к/моль. Напомним, что расходуется энергия четырех макроэргпческих фосфатных связей для обеспечения каскада реакций, формирующих каждую пептидную связь. Для этого требуется суммарно 48000 калорий, что существенно больше, чем 500-5000 калории, запасаемых в каждой пептидной связи.

Энергия АТФ используется для синтеза глюкозы из молочной кислоты и синтеза жирных кислот из ацетил-КоА. Кроме того, энергия расходуется для образования холестерола, фосфолипидов, гормонов и других веществ организма. Даже мочевина, экскретируемая почками, требует энергии АТФ для ее образования из аммиака. Помня о чрезвычайной токсичности аммиака, можно понять значимость и ценность этой реакции, поддерживающей концентрацию аммиака в организме на очень низком уровне.

АТФ обеспечивает энергией мышечное сокращение. Мышечное сокращение невозможно без энергии АТФ. Миозин — один из важных контрактиль-ных белков мышечного волокна — ведет себя как фермент, вызывающий расщепление АТФ до АДФ, высвобождая энергию, необходимую для мышечного сокращения. При отсутствии мышечного сокращения обычно расщепляется очень небольшое количество АТФ, но этот уровень расхода АТФ может увеличиваться почти в 150 раз (по сравнению с покоем) в течение короткого периода максимальной активности (механизм, с помощью которого энергия АТФ используется для обеспечения мышечного сокращения).

АТФ обеспечивает энергией активный транспорт через мембраны. Активный транспорт большинства электролитов и веществ, таких как глюкоза, аминокислоты и ацетоуксусная кислота, может осуществляться против электрохимического градиента, даже если естественная диффузия должна осуществляться по электрохимическому градиенту. Противодействие ему требует затрат энергии, которую обеспечивает АТФ.

АТР обеспечивает энергией процессы секреции. По тем же правилам, что и всасывание веществ против градиента концентрации, осуществляются процессы секреции в железах, поскольку для концентрирования веществ также необходима энергия.

АТФ обеспечивает энергией проведение возбуждения по нервам. Энергия, используемая для проведения нервного импульса, является производной потенциальной энергии, запасенной в виде разницы концентраций ионов по обе стороны мембраны нервного волокна. Так, высокая концентрация ионов калия внутри волокна и низкая концентрация снаружи представляют собой разновидность способа запасания энергии. Высокая концентрация ионов натрия на наружной поверхности мембраны и низкая концентрация внутри представляют другой пример способа запасания энергии. Энергия, необходимая для проведения каждого потенциала действия вдоль мембраны волокна, является производной запасенной энергии, когда небольшое количество калия выходит из клетки, а поток ионов натрия устремляется в клетку.

Однако система активного транспорта, обеспечиваемая энергией АТФ, возвращает переместившиеся ионы в исходное положение относительно мембраны волокна.

— Вернуться в оглавление раздела «Физиология человека.»

Пути использования аминокислот в организме

Основные пути использования аминокислот в клетках организма представлены на рис. 51.

Рис. 51. Пути использования аминокислот в клетках организма

Главный путь использования аминокислот – синтез специфических для организма белков: структурных, сократительных, белков-ферментов, гормонов белковой природы взамен распадающихся. Скорость обновления тканевых белков достаточно высока. Так период полураспада белков печени составляет около 9 суток, белков мышечной ткани около 120 суток.

Читайте так же:  Л карнитин как разводить

Другой важнейший путь использования аминокислот – синтез различных биологически активных веществ. Даже если исключить из этой группы белки-ферменты и гормоны белковой природы, перенеся их в группу белков, останется достаточно многочисленная группа веществ: гормонов-полипептидов, гормонов — производных аминокислот и ряд других соединений, выполняющих в организме преимущественно регуляторные функции.

Часть аминокислот (и поступивших из пищеварительной системы, и образовавшихся при распаде тканевых белков) используется в качестве источника энергии. Некоторое количество аминокислот может превращаться в углеводы, в липиды. Хотя последнее наиболее вероятно при поступлении в организм избыточного количества белка. Еще один очень важный путь использования аминокислот – синтез заменимых аминокислот. Рассмотрим важнейшие пути использования аминокислот в клетках организма.

Синтез белков

Синтез белка это сложный многоступенчатый процесс, основными этапами которого являются транскрипция, активация аминокислот и трансляция. Рассмотрим основные этапы синтеза белка.

Транскрипция.

Специфика того или иного белка определяется набором аминокислот и порядком их соединения в белковой молекуле. Набор аминокислот и порядок их соединения закодирован в молекуле ДНК с помощью последовательности нуклеотидов. Каждая аминокислота кодируется тремя расположенными рядом нуклеотидами – триплетами или кодонами. Главным отличительным свойством различных нуклеотидов являются входящие в их состав азотистые основания, которых в ДНК встречается четыре вида: аденин, гуанин, тимин и цитозин. Сочетаниями из трех азотистых оснований можно образовать 64 различных триплета.

Молекулы ДНК находятся в ядре и не принимают непосредственного участия в синтезе белка. Информация о последовательности аминокислот в той или иной молекуле белка передается от ДНК к местам синтеза с помощью информационной РНК (и-РНК). Транскрипция — это процесс синтеза и-РНК на участке ДНК, несущем информацию о последовательности аминокислот в конкретной молекуле белка. Такой участок ДНК называется геном или цистроном.

Транскрипция начинается с разрыва водородных связей между двумя комплементарными цепями ДНК с помощью фермента ДНК-полимеразы. Затем происходит раскручивание спирали ДНК на участке, несущем нужную для синтеза белка информацию. Завершается транскрипция синтезом и-РНК при участии фермента РНК-полимеразы. В результате информация о последовательности аминокислот в белковой молекуле переносится в и-РНК. И-РНК выходит из ядра в цитоплазму и присоединяется к рибосоме.

Активация аминокислот

. В синтезе белка участвуют активные аминокислоты. Активация аминокислот начинается с их взаимодействия с АТФ, в результате которого образуется макроэргический комплекс аминокислоты (Ак) с АМФ (аминоациладенилат — Ак

АМФ) и неорганический пирофосфат (ФФн):

Затем происходит взаимодействие активированной аминокислоты с соответствующей данной аминокислоте транспортной РНК (т-РНК) с образованием макроэргического комплекса аминокислоты с т-РНК (аминоацил

Реакция катализируется ферментом аминоацил-т-РНК-синтетазой. Этот этап синтеза белка получил название рекогниции..

Транспортные РНК представляют собой сравнительно небольшие молекулы, состоящие из 80-100 нуклеотидов. Каждой аминокислоте соответствует от одной до шести видов т-РНК, с которыми она может образовывать комплекс. Транспортные РНК имеют два специфических триплета. Один из них кодон, к которому присоединяется аминокислота, другой – антикодон, который может присоединяться к кодону соответствующей аминокислоты в и-РНК по принципу комплементарности. Роль т-РНК сводится не только к доставке аминокислот к местам синтеза белка – рибосомам, но и переводу информации с последовательности нуклеотидов на последовательность аминокислот.

Трансляция

. Непосредственный синтез белка (трансляция) осуществляется на особых внутриклеточных образованиях, называемых рибосомами. Рибосомы построены из нуклеопротеинов, содержащих примерно 60% РНК и 40% различных белков. Они обеспечивают считывание генетической информации с и-РНК и реализацию ее в последовательности аминокислот в синтезируемой молекуле белка. Рибосомы обладают ферментативными свойствами, катализируя образование пептидных связей между аминокислотами. В процессе синтеза белка молекула и-РНК передвигается между двумя субъединицами рибосомы, к одной из которых присоединяется специфический белоксинтезирующий фермент (пептидилтрансфераза). В процессе этого перемещения кодоны и-РНК взаимодействуют с антикодонами т-РНК. При этом белоксинтезирующий фермент катализирует присоединение аминокислотного остатка т-РНК к полипептидной цепи. Образование и удлинение полипептидной цепи на рибосоме (элонгация) происходит с затратой энергии, источником которой является макроэргическое соединение гуанинтрифосфат (ГТФ).

Завершение синтеза белка (терминация) обеспечивается специальными кодонами в и-РНК (стоп-сигналами), которые не используются для кодирования аминокислот. Уже в процессе синтеза белка формируется первичная (последовательность аминокислот) и вторичная структура белковой молекулы. После завершения синтеза и отделения полипептидной цепи от рибосомы происходит формирование третичной и четвертичной структуры белка. В формировании третичной и четвертичной структуры белка участвуют дополнительные внутриклеточные органеллы (аппарат Гольджи).

Синтеза белка — энергоемкий процесс. Присоединение к полипептидной цепи одной аминокислоты требует затраты по меньшей мере пяти молекул АТФ. При активации аминокислоты АТФ распадается до АМФ, что эквивалентно затрате двух молекул АТФ. На этап трансляции затрачивается одна молекула ГТФ. В процессе элонгации расходуются две молекулы ГТФ на каждую присоединяемую к цепи аминокислоту. И, наконец, терминация (завершение синтеза) требует затраты еще одной молекулы ГТФ.

Ресинтез ГТФ происходит в реакции ГДФ с АТФ:

ГДФ + АТФ = ГТФ + АДФ

Следовательно, одним из важнейших условий синтеза белка является возможность обеспечения этого процесса достаточным количеством энергии.

Аминокислоты, не использованные для синтеза белка, подвергаются различным превращениям, которые, в большинстве своем начинаются с реакций трех типов: декарбоксилирования, трансаминирования, дезаминирования.

Видео удалено.
Видео (кликните для воспроизведения).

Дата добавления: 2016-11-02 ; просмотров: 397 | Нарушение авторских прав

Источники


  1. Болезнь как язык души. Проблемы сердца и органов пищеварения. Руководство для сна (комплект из 3 книг). — М.: ИГ «Весь», 2012. — 656 c.

  2. Ольга, Захаренко Гимнастика для сосудов / Захаренко Ольга. — М.: Рипол Классик, Дом. XXI век, 2012. — 932 c.

  3. Гимнастика для пальчиков. Развивающая пропись-раскраска. — М.: Современная школа, ЮниверсПресс, 2011. — 156 c.
  4. Раменская, Т. И. Лыжный спорт. Учебник / Т.И. Раменская, А.Г. Баталов. — М.: Физическая культура, 2005. — 320 c.
Синтез атф из аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here