Синтез креатина и креатинфосфата

Сегодня предлагаем ознакомится со статьей на тему: синтез креатина и креатинфосфата с профессиональным описанием и объяснением.

Параграф 69. 2. Обмен и роль креатина

Автор текста – Анисимова Елена Сергеевна.
Авторские права защищены. Продавать текст нельзя.
Курсив не зубрить.
Замечания можно присылать по почте: [email protected]
https://vk.com/bch_5

Параграф 69.2.
Обмен и роль креатина.
Медицинское значение креатинкиназы и креатинина.

См. таблицу к этому параграфу в файле «69.2. таблица»

69.2.1. Ф у н к ц и я к р е а т и н а .
(в таблице – столбик 3)
Креатин нужен в мышцах
для того, чтоб при наличии в мышцах АТФ (при покое и сытости)
от АТФ к креатину переносился фосфат;
при этом АТФ превращается в АДФ,
а креатин превращается в креатин/фосфат – КФ.

Когда мышца работает, то АТФ расщепляется на АДФ и фосфат;
уменьшение количества АТФ в мышце приводит в неспособности мышцы к дальнейшей работе.

Образование новых молекул АТФ из АДФ
в первые мгновения происходит за счет (обратного) переноса фосфата
от креатинфосфата на АДФ
(при этом фосфат отщепляется от креатина).
В результате АДФ превращается в АТФ,
а креатин/фосфат превращается в креатин.

Таким образом, КФ позволяет восполнить запасы АТФ в работающей мышце
и тем самым КФ продлевает способность мышцы работать.

Можно сказать, что КФ является формой хранения фосфата.
Превращение креатина в КФ
и (обратно) КФ – в креатин (обратимая реакция)
катализируется ферментом креатин/киназой (КК).

69.2.2. Диагностическое значение креатинкиназы.

КК имеет диагностическое значение. –
КК находится в основном в мышцах,
поэтому повышение активности КК в плазме
указывает на повреждение мышц – скелетных или сердечной (при инфаркте).
См. п.8.

69.2.3. Место КФ среди источников энергии для мышц.
Чем больше запасы КФ в мышце,
тем больше работоспособность мышцы (при прочих равных условиях).

[КФ] расходуется в течение нескольких секунд.
После этого запасы АТФ в мышце восполняются:
за счет анаэробного гликолиза,
затем за счёт аэробного гликолиза
и (если кислорода достаточно) за счет окисления жирных кислот – п.32 и 45.

Концентрация креатинфосфата в мышцах
зависит от тренированности организма
и от наличия условий для синтеза креатина.

Условия для синтеза креатина –

1) здоровые почки и печень,
так как именно в этих органах происходит синтез креатина,
2) наличие «сырья» для синтеза креатина
(аминокислот глицина, аргинина и метионина),
3) наличие ферментов синтеза креатина
(зависит от качества генов, кодирующих эти ферменты,
от наличия аминокислот для синтеза ферментов).

69.2.4. С и н т е з к р е а т и н а –
это две реакции:
первая происходит в почках,
а вторая – в печени.
См. формулы в файле 69.2. таблица.

Краткое описание синтеза креатина:
на атом азота глицина происходит перенос двух групп –
сначала от аргинина, а затем– от S.A.M. (см. п.68.2).

Подробное описание синтеза креатина:
в первую реакцию вступают глицин и аргинин,
в результате чего аргинин превращается в орнитин,
а глицин – в гуанидинацетат.

При реакции происходит перенос группы
от аргинина на глицин
(это та же группа, которая отщепляется в цикле мочевины,
она называется – «амидиновая»).

Вторая реакция синтеза креатина –
гуанидинацетат вступает в реакцию с S.A.M,
в результате чего гуанидинацетат превращается в креатин,
а S.A.M. – в S-аденозил/гомоцистеин.

При реакции происходит перенос метильной (-СH3) группы
от S.A.M. на гуанидинацетат.

(Восполнение количества S.A.M. происходит при наличии фолата и В12 – п.68.1).

КреатинИН (не путать с креатином).

От КФ фосфат может
не только переноситься на АДФ (реакция 3),
но и «просто» отщепляться.

При переносе фосфата на АДФ от КФ переносится -Н2РО3,
поэтому из КФ образуется креатин,
способный снова превратиться в КФ,
пригодный для повторного использования в синтезе КФ (реакция 3).

При отщеплении фосфата от КФ отщепляется Н3РО4 –
при этом вместе с атомами -Н2РО3 фосфатной группы
отщепляются ОН атомы карбоксильной группы (-СООН)
(подчеркнуты на формулах).

Поэтому КФ превращается в вещество,
у которого меньше атомов, чем у креатина (кретин без ОН атомов).
Между атомом азота, от которого отщепилась фосфатная группа,
и атомом углерода, от которого отщепились ОН атомы,
образуется связь,
в результате чего образуется циклическое соединение;
называется этот продукт реакции отщепления фосфата – креатинИН.

[2]

Креатинин не используется организмом
(не подвергается в организме метаболизму).

Из мышц креатинин поступает в кровь,
из крови креатинин поступает в мочу благодаря фильтрации почками.

Снижение скорости фильтрации крови почками
приводит к повышению концентрации креатинина в крови
и снижению концентрации креатинина в моче.

Поэтому повышение концентрации кретинина в крови:
указывает на почечную недостаточность.

В этом – диагностическое значение креатинина;
определение концентрации креатинина в крови –
важный тест для оценки функции почек.

Используется также определение
клиренса по креатинину.
Слово «клиренс» означает «очищение».

Клиренс по креатинину – это оценка очищающей способности почек
по количеству кретинина в крови и в моче.

Чем лучше работают почки
(чем лучше почки очищают кровь – чем больше клиренс),

[1]

тем больше креатинина поступает из крови в мочу –
тем больше креатинина в моче и меньше креатинина в крови,

Читайте так же:  Лучшие витамины для роста волос

тем больше величина дроби «креатинин в моче» / «креатинин в крови».

Синтез креатина: последовательность реакций, значение креатинфосфата. Физиологическая креатинурия. Значение креатинкиназы и креатинина в диагностике.

Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.

Если синтез креатина опережает возможности его фиксации в мышечной ткани, то развивается креатинурия – появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.

Креатинин является конечным продуктом азотистого обмена. Образуется в мышечной ткани из креатинфосфата. Креатинин попадает в мочу преимущественно путем клубочковой фильтрации и в крайне небольшом количестве за счет активной канальцевой секреции.

Норма: мужчины 7,1-17,7 ммоль/сут, женщины 5,3‑15,9 Клинико‑диагностическое значение. Выводимое количество мало зависит от содержания белков в диете, а связано с объемом мышечной ткани и ее активностью.

Увеличение концентрации креатинина может быть связано с повышенной физической активностью, с лихорадочными состояниями, отмечается при выраженной недостаточности функции печени, при сахарном диабете, инфекциях. Снижение обнаруживается при голодании, у больных с мышечной атрофией, с дегенерацией и амилоидозом почек, лейкемией.

Креатин образуется в последовательных реакциях в почках и печени и далее доставляется в скелетные мышцы, миокард и нервную ткань. Здесь он фосфорилируется и выполняет роль резервного макроэрга.

В норме в моче нет. Клинико‑диагностическое значение. В первые годы жизни ребенка возможна физиологическая креатинурия, что объясняется его усиленным синтезом, опережающим рост мускулатуры. Креатинурия возможна и в пожилом возрасте как следствие атрофии мышц и снижения использования образующегося в печени креатина. У взрослых увеличение содержания креатина в крови свыше 0,12 ммоль/л сопровождается появлением его в моче. Выделение креатина возрастает при беременности и в раннем послеродовом периоде. Накопление в моче отмечается при поражениях мышечной системы (миопатии, мышечная дистрофия), при сахарном диабете, эндокринных расстройствах (гипертиреоз, аддисонова болезнь, акромегалия), инфекционных заболеваниях, системной красной волчанке, переломах костей, ожогах, белковом голодании, недостатке витамина Е.

Креатинфосфокиназа (Креатинкиназа), магнийзависимый фермент, содержится исключительно в цитоплазме и митохондриях миокарда, скелетной мускулатуры и ткани мозга, где катализирует реакцию: Креатин + АТФ  АДФ + Креатинфосфат

Равновесие реакции при щелочных значениях pH сдвинуто в сторону образования АТФ.

Высокая активность фермента обнаружена в мышечной и нервной ткани, в которых значительная часть энергии переносится между клеточными компартментами в виде креатинфосфата. Среди различных типов мышечной ткани активность КФК распределяется следующим образом: поперечно‑полосатые мышцы > сердечные мышцы > мышцы беременной матки > мышцы матки > гладкие мышцы.

Фермент является гетерогенным белком, состоящим из 2‑х типов субъединиц — В и М. В связи с этим выделяют три изофермента: ММ (содержится в скелетной мускулатуре и миокарде), ВВ (преимущественно в мозге и гладких мышцах) и МВ (в сердечной мышце). Изоферменты различаются по физико‑химическим и иммунологическим свойствам.

Образование креатинина

Креатинин образуется из креатина – азотистого соединения мышечной ткани. Креатин синтезируется в печени из АК: АРГ, МЕТ, ГЛИ. Затем креатин поступает в мышцу, где связывает фосфат с образованием креатинфосфата.

Иногда креатинфосфат «теряет» фосфат, тогда образуется креатинин – конечный продукт распада креатина (в креатинине образуется связь между азотом аминогруппы и углеродом карбокси-группы).

Количество креатинина в моче определяется как показатель клубочковой фильтрации почек (он не реабсорбируется). Также определяют клиренс креатинина – сравнение содержания его в крови и в моче.

Все конечные продукты, содержащиеся в крови, составляют остаточный азот крови – это азот, остающийся в растворе после осаждения белков. В норме остаточный азот 14-28 ммоль/л. Он состоит из азота промежуточных продуктов (пептиды, АК, билирубин, нуклеотиды, креатин, индол) и азота конечных продуктов (мочевина, мочевая кислота, креатинин, индикан).

Синтез креатина и креатинфосфата

Креатин необходим для образования в мышцах макроэргического соединения креатинфосфата. Синтез креатина идет в 2 стадии с использованием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования с образованием креатина. Креатин с током крови переносится в мышцы и клетки мозга, где из него под действием креатинкиназы (реакция легко обратима) образуется креатинфосфат – своеобразное депо энергии.

Креатинфосфокиназа

Креатинфосфокиназа (КФК, креатинкиназа, АТФ:креатин‑фосфотрансфераза, КФ 2.7.3.2.), магнийзависимый фермент, содержится исключительно в цитоплазме и митохондриях миокарда, скелетной мускулатуры и ткани мозга, где катализирует реакцию:

Равновесие реакции при щелочных значениях pH сдвинуто в сторону образования АТФ. Образуемый в отдыхе между усилиями или после нагрузки креатинфосфат представляет собой запас энергии для ресинтеза АТФ во время мышечного сокращения.

Высокая активность фермента обнаружена в мышечной и нервной ткани, в которых значительная часть энергии переносится между клеточными компартментами в виде креатинфосфата. Среди различных типов мышечной ткани активность КФК распределяется следующим образом: поперечно‑полосатые мышцы > сердечные мышцы > мышцы беременной матки > мышцы матки > гладкие мышцы.

Читайте так же:  Витамины для женщин для головы

Фермент является гетерогенным белком, состоящим из 2‑х типов субъединиц — В (англ. brain) и М (англ. muscle). В связи с этим выделяют три изофермента: ММ (содержится в скелетной мускулатуре и миокарде), ВВ (преимущественно в мозге и гладких мышцах) и МВ (в сердечной мышце). Изоферменты различаются по физико‑химическим и иммунологическим свойствам.

1. Определение активности фермента можно проводить как по прямой, так и по обратной реакции, определяя содержание креатина или креатинфосфата :

  • в обратной реакции образовавшийся креатин определяют колориметрически с использованием диацетила и α‑нафтола.
  • в прямой реакции содержание креатинфосфата определяют после его кислотного гидролиза по уровню образующегося неорганического фосфата.

Спектрофотометрический способ определения с использованием непрямого оптического теста Варбурга, осуществляется по прямой и обратной реакции:

Прямая реакция:

[3]

Креатин + АТФ

Креатинфосфат + АДФ

АДФ + Пируватфосфат

АТФ + Пируват

Пируват + НАДН

Лактат + НАД

Обратная реакция:

Креатинфосфат + АДФ

Креатин + АТФ

АТФ + глюкоза

АДФ + глюкозо‑6‑фосфат

Глюкозо‑6‑фосфат + НАДФ

6‑Фосфоглюконат + НАДФН

Изоферменты креатинфосфокиназы определяют при помощи электрофореза (на агаре, в полиакриламидном геле) и колоночной хроматографии.

Унифицированными методами являются колориметрический метод с использованием креатина в качестве субстрата (определение уровня образующегося креатинфосфата по содержанию неорганического фосфора) и оптический тест с использованием креатинфосфата в качестве субстрата (длина волны 334, 340, 365 нм).

Определение активности креатинфосфокиназы
по образованию неорганического фосфора

Креатинфосфат является нестойким веществом и спонтанно гидролизуется в кислой среде до креатинина и остатка фосфорной кислоты. Неорганический фосфат определяют колориметрически как желтый комплекс фосфорнованадиево‑молибденовой кислоты.

Нормальные величины

Общая активность
Сыворотка (указанный метод) до 100 нмоль/с·л или
до 6 МЕ
(оптический тест) 5‑80 МЕ
Изоферменты
Сыворотка (электрофорез) BB — отсутствие или следы
MB 94‑96%общей активности

Влияющие факторы

in vitro: завышает результаты исследования наличие фосфора в посуде, гемолиз (из‑за наличия в эритроцитах аденилаткиназы). Разведение сыворотки может дать неадекватные результаты.

in vivo: повторные мышечные инъекции, тяжелые мышечные нагрузки, хирургические операции, этанол, длительная анестезия ведут к увеличению активности фермента в сыворотке.

Клинико‑диагностическое значение

Наиболее широкое применение исследование активности КФК нашло при диагностике инфаркта миокарда: активность фермента возрастает уже через 2‑3 часа после поражения миокарда и через 14‑30 часов достигает максимума, нормализация показателей наступает обычно на вторые-третьи сутки после приступа, длительное удерживание гиперэнзимемии наблюдается у больных с выраженным нарушением коронарного кровообращения. Кроме инфаркта, увеличение активности фермента в сыворотке стимулируют миокардиты, сердечная недостаточнсть, сердечные аритмии, при этом отмечается 20‑30‑кратное превышение нормальных показателей. Увеличение идет в основном за счет MB‑фракции КФК.

Значительно более высокая активность КФК обнаруживается при заболеваниях мышечной системы, прежде всего миогенного происхождения (полиомиелит, мышечная дистрофия, дерматомиозит). При прогрессирующей мышечной дистрофии (миопатии) увеличение активности КФК отмечается уже в первые стадии болезни. В конечной стадии, вследствие замещения мышечной ткани на соединительную и жировую, активность фермента приходит в норму.

Подъем активности может наблюдаться при травматическом повреждении ткани мозга, инфаркте мозга, менингите, гипотиреозе, отравлениях снотворными, кровоизлияниях в мозг.

Снижение активности не имеет практического значение, отражая либо малую мышечную массу, либо сидячий образ жизни.

Реакции синтеза креатина в почках и печени

Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.

Синтез креатинфосфата

Если синтез креатина опережает возможности его фиксации в мышечной ткани, то развивается креатинурия– появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.

В мышце дезаминирование аминокислот идет особым образом

Так как в скелетных мышцах нет глутаматдегидрогеназы и нет возможности производить прямое дезаминирование аминокислот, то для этого существует особый путь.

В мышечных клетках при интенсивной работе, когда идет распад мышечных белков, активируетсяальтернативный способ дезаминирования аминокислот – цикл АМФ-ИМФ. Образовавшийся при трансаминировании глутамат при участии аспартатаминотрансферазыреагирует с оксалоацетатом и образуется аспарагиновая кислота. Аспартат далее передает свою аминогруппу на инозинмонофосфат (ИМФ) с образованием АМФ, который в свою очередь подвергается дезаминированию с образованием свободного аммиака.

Реакции непрямого дезаминирования аминокислот в мышечной ткани

Процесс носит защитный характер, т.к. при мышечной работе выделяется молочная кислота. Аммиак, связывая ионы Н + , предотвращает закисление цитозоля миоцитов.

В клетках постоянно образуется аммиак

Аммиак непрерывно образуется во всех органах и тканях организма. Наиболее активными его продуцентами в кровь являются органы с высоким обменом аминокислот и биогенных аминов – нервная ткань, печень, кишечник, мышцы.

Основные источники аммиака

Видео удалено.
Видео (кликните для воспроизведения).

Основными источниками аммиака являются следующие реакции:

· неокислительное дезаминирование некоторых аминокислот (серина, треонина, гистидина) – в печени,

· окислительное дезаминирование глутаминовой кислоты во всех тканях (кроме мышечной), особенно в печени и почках,

· дезаминирование амидовглутаминовой и аспарагиновой кислот – в печени и почках,

· катаболизм биогенных аминов – во всех тканях, в наибольшей степени в нервной ткани,

Читайте так же:  Креатин принимают до еды или

· жизнедеятельность бактерийтолстого кишечника,

· распад пуриновых и пиримидиновых оснований – во всех тканях.

Связывание аммиака

Так как аммиак является чрезвычайно токсичным соединением, то в тканях существуют несколько реакций связывания (обезвреживания) аммиака – синтез глутаминовой кислоты и глутамина, синтез аспарагина, синтез карбамоилфосфата:

· синтез глутаминовой кислоты (восстановительное аминирование) – взаимодействие α-кетоглутарата с аммиаком. Реакция по сути обратнареакции окислительного дезаминирования, однако в качестве кофермента используется НАДФН. Происходит практически во всех тканях, кроме мышечной, но имеет небольшое значение, т.к. для глутаматдегидрогеназы предпочтительным субстратом является глутаминовая кислота и равновесие реакции сдвинуто в сторону α-кетоглутарата,

Реакция синтеза глутаминовой кислоты

· синтез глутамина – взаимодействие глутамата с аммиаком. Является главным способом уборки аммиака, наиболее активно происходит в нервной и мышечной тканях, в почках, сетчатке глаза, печени. Реакция протекает в митохондриях.

Реакция синтеза глутамина

Образование большого количества глутамина обеспечивает высокие концентрации его в крови (0,5-0,7 ммоль/л).

Так как глутамин проникает через клеточные мембраны путем облегченной диффузии, то он легко попадает не только в гепатоциты, но и в другие клетки, где есть потребность в аминогруппах. Азот, переносимый глутамином, используется клетками для синтеза пуринового и пиримидинового колец, гуанозинмонофосфата (ГМФ), аспарагина, глюкозамино-6-фосфата (предшественник всех остальных аминосахаров).

· синтез аспарагина– взаимодействие аспартата с аммиаком. Является второстепенным способом уборки аммиака, энергетически невыгоден, т.к. при этом тратятся 2 макроэргические связи,

Реакция синтеза аспарагина

· синтез карбамоилфосфата в митохондриях печени – реакция является первой в процессе синтезамочевины, средства для удаления аммиака из организма.

Транспорт аммиака

Транспортными формами аммиака из тканей в печень являются глутамини аланин, в меньшей степениаспарагини глутамат, некоторое количество аммиака находится в крови в свободном виде. Глутамин и аланин являются наиболее представленными, их доля среди всех аминокислот крови составляет до 50%. Большая часть глутамина поступает от мышц и нервной ткани, аланин переносит аммиак от мышц и стенки кишечника.

Глюкозо-аланиновый цикл

В мышцахосновным акцептором лишнего аминного азота является пируват. При катаболизме белков в мышцах происходят реакции трансаминирования аминокислот, образуется глутамат, который далее передает аминоазот на пируват и образуется аланин. Из мышц с кровью аланин переносится в печень, где в обратной реакции передает свою аминогруппу на глутамат. Образующийся пируват используется как субстрат в реакциях синтеза глюкозы (глюконеогенез), а глутаминовая кислота дезаминируется и аммиак используется в синтезе мочевины.

Креатин, креатинин. Биосинтез креатина и креатинина

Креатин и креатинин – важные компоненты остаточного азота, в синтезе которых принимают участие аминокислоты аргинин, глицин и метионин.

В почечной ткани при участии фермента трансамидиназы, переносящего амидиновый остаток аргинина на глицин) образуется предшественник креатина – гуанидин уксусная кислота, которая подвергается метилированию в печени. С током крови креатин доставляется из печени в мышечную ткань, где происходит его фосфорилирование под влиянием креатинкиназы. Макроэрг креатинфосфат, образованный в митохондриях миоцитов, перемещается к миофибриллам, где происходит его разрушение с выделением утилизуруемой сократительными волокнами порции энергии, а также остатка неорганического фосфора и молекулы воды. Дегидратированный креатин – креатинин, будучи беспороговым веществом, выделяется с мочой. Уровень его содержания в крови и моче определяется в основном мышечной массой и выделительной способностью почек.

И креатин, и креатинфосфат найдены в мышцах, мозге и крови. Креатинифосфат в мышцах путем спонтанной неферментной потери фосфата, H2O превращается в креатинин, который выделяется почками, и уровень выделения (клиренс креатинина) – мера их функциональных возможностей. Удаление креатинина представляет собой путь значительных потерь организмом метильных групп, используемых в синтезе многих органических молекул.

Лекция № 7.

ТЕМА «ОБМЕН ХРОМОПРОТЕИНОВ В ОРГАНИЗМЕ».

Содержание темы:

1. Гемоглобин, миоглобин. Строение, функции, отличия, биологическое значение для организма.

2. Синтез гема. Распад гемоглобина в организме.

3. Желтухи. Лабораторные показатели желтух.

Представителем хромопротеидов является

Гемоглобин и миоглобин.

Гемоглобин –

состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II). Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении. Нb + О2 → НbО2оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм рт. ст.).

В капиллярах тканей, где парциальное давление кислорода низкое (5 мм рт. ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.

Сравнение зависимости насыщения от парциального давления кислорода показывает, что при парциальных давлениях кислорода, характерных для тканей, гемоглобин отдает значительные количества кислорода. В гемоглобине происходит перемещение атома железа в плоскость гема с одновременным изменением конформации полипептидной цепи, но так как молекула Нb имеет четвертичную структуру и отдельные цепи связаны между собой, то это позволяет передать изменения конформации на область связи между полипептидными цепями. Это изменяет положение в пространстве всей молекулы и облегчает доступ О2 к остальным гемам молекулы Нb. Одновременно это изменение конформации сопровождается появлением на поверхности групп, которые, диссоциируя, отдают протоны (Н + ) в окружающую среду. При понижении парциального давления кислорода события повторяются в обратном направлении: отдача кислорода идет по мере снижения парциального давления, гемоглобин переходит в другое конформационное состояние, при этом из окружающей среды (ткань), где высока концентрация протонов, протоны присоединяются к гемоглобину. Такие изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.

Читайте так же:  Л аргинин и алкоголь

При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.

Различные формы Нb определяются методом спектрального анализа. У взрослого человека молекула НbА (2 α-цепи и 2 β-цепи). Но от целого ряда условий состав цепей гемоглобина может меняться. У плода НbF (фетальный – 2 α-цепи, 2 γ-цепи) – он лучше связывает кислород при его относительной недостаточности в период внутриутробного развития.

В результате определенных нарушений генетического аппарата клетки Нb патологический, а заболевания – гемоглобинопатии наследственного происхождения.

Классическим примером является серповидно-клеточная анемия(аномальный гемоглобин – причина). Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.

Миоглобин –

хромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо в составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.

Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.

Гемпростетическая группа многих важных с точки зрения функций белков.

Гем – небелковая часть, в составе находится Fе (ΙΙ), гем входит в состав флавопротеинов, гемопротеидов, гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов.

Знание вопросов биосинтеза и распада гема призвано помочь в понимании роли гемопротеинов в организме. Нарушение этих процессов связано с развитием заболеваний. Так, с нарушением биосинтеза гема связана группа заболеваний – порфирии.

Порфирии –

группа заболеваний с нарушением биосинтеза гемма. группа заболеваний с нарушением биосинтеза гемма. Наблюдается накопление побочных промежуточных продуктов, которые откладываются в различных органах или выделяются в повышенных количествах с калом или мочой. Появление в моче в значительных количествах веществ незавершенного синтеза гемма либо продуктов его распада (копропорфирин и уропорфирин) вызывает порфиринурию. Моча пурпурно-красного цвета. Это бывает при некоторых поражениях печени, кишечных кровотечениях, интоксикациях. Порфиринурия является одним из признаков отравления свинцом, когда нарушается транспорт Fe, необходимого для синтеза гемоглобина.

Гораздо чаще встречаются патологические состояния, связанные с распадом гема и нарушением выведения из организма продуктов его катаболического превращения. Наиболее распространенной является желтуха.

Схема синтеза гема глицин + сукцинил – КоА синтаза 5-аминолевулиновой кислоты 5 – аминолевулиновая кислота Уропорфириноген ΙΙΙ В цитоплазме клеток Копропорфириноген ΙΙΙ

В митохондриях + Fe 2+

Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин. Хромопротеиды растительного и животного происхождения, находящиеся в пищевых продуктах, подвергаются действию ферментов пищеварительного тракта.

Гемоглобин пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Белок расщепляется пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в ЖКТ, которые свойственны простым белкам. Простетическая группа – гемм – окисляется в гематин. Гематин всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в виде различных продуктов, образующихся под влиянием бактерий кишечника. Обычные химические способы обнаружения крови в кале, имеющие большое значение для клиники, основаны на реакциях гематина, и могут дать достоверные результаты только в том случае, если диета не содержит мяса, в котором присутствует миоглобин.

Читайте так же:  Протеин 1000 для волос

Время жизни эритроцитов у взрослого организма составляет около 4 месяцев. Спустя этот период времени эритроциты разрушаются в основном в печени, селезенке и костном мозге. В ходе разрушения из эритроцитов высвобождается гемоглобин (8 – 9 г в сутки).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Биосинтез креатина и его последующие превращения.

3.4.1.Синтез креатина в тканях человека протекает в две стадии. На первой стадии в почках образуется гуанидинацетат:

На второй стадии в печени происходит реакция трансметилирования:

3.4.2.Синтезированный в печени креатин поступает в кровь и доставляется в мышцы. Там он взаимодействует с АТФ, в результате чего образуется макроэргическое соединение креатинфосфат. Эта реакция легко обратима.

В состоянии покоя мышцы накапливают креатинфосфат (его содержание в неработающей мышце в 3-8 раз выше, чем содержание АТФ). При переходе к мышечной работе изменяется направление реакции и образуется АТФ, необходимый для мышечного сокращения.

Образование АТФ при участии креатинфосфата – наиболее быстрый путь генерации АТФ. Запас креатинфосфата обеспечивает интенсивную работу мышц в течение 2 – 5 секунд. За это время человек успевает пробежать 15 – 50 метров. Тем временем включаются другие механизмы образования АТФ: мобилизация мышечного гликогена, окисление субстратов, поступающих из печени и жировой ткани.

Концентрация креатина в крови здоровых взрослых людей составляет приблизительно 50 мкмоль/л; в моче он практически отсутствует. Появление креатина в моче не всегда является симптомом заболевания. Так, у маленьких детей и подростков моча всегда содержит креатин (физиологическая креатинурия). При заболеваниях мышц, когда нарушается образование креатинфосфата, увеличивается содержание креатина в крови и возрастает его экскреция с мочой.

3.4.3.В результате неферментативного дефосфорилирования креатинфосфата образуется креатинин – ангидрид креатина.

Креатинин – один из конечных продуктов азотистого обмена в организме, он выводится с мочой. Суточное выделение креатинина у здорового человека пропорционально его мышечной массе. Креатинин не реабсорбируется в почечных канальцах, поэтому его суточная экскреция является показателем фильтрационной функции почек. Содержание креатинина в крови снижается при заболеваниях мышц и увеличивается при нарушении функции почек. Выделение креатинина с мочой снижается в обоих случаях.

Дата добавления: 2016-04-14 ; просмотров: 1174 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Креатинфосфат — это запас взрывной энергии

Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.

Использование креатинфосфата для ресинтеза АТФ

Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает срочный ресинтез АТФ в первые секунды работы (5‑10 сек), когда никакие другие источники энергии (анаэробный гликолиз, аэробное окисление глюкозы, β-окисление жирных кислот) еще не активированы, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода.

Около 3% креатинфосфата постоянно в реакции неферментативного дефосфорилирования превращается в креатинин. Количество креатинина, выделяемое здоровым человеком в сутки, всегда почти одинаково и зависит только от объема мышечной массы. Уровень активности креатинкиназы в крови и концентрация креатинина в крови и моче являются ценными диагностическими показателями.

Образование креатинина из креатинфосфата

Синтез креатина

Синтез креатина идет последовательно в почках и печени в двух трансферазных реакциях. По окончании синтеза креатин с током крови доставляется в мышцы или мозг.

Реакции синтеза креатина в почках и печени

Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.

Синтез креатинфосфата
Видео удалено.
Видео (кликните для воспроизведения).

Если синтез креатина опережает возможность его фиксации в мышечной ткани, то развивается креатинурия – появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.

Источники


  1. Белоусов, А. С. Дифференциальная диагностика болезней органов пищеварения / А.С. Белоусов. — М.: Медицина, 1984. — 288 c.

  2. Аэрогриль. Основа здорового питания. — Москва: Гостехиздат, 2002. — 320 c.

  3. Епифанов, В. А. Лечебная физическая культура и спортивная медицина / В.А. Епифанов. — М.: Медицина, 2004. — 84 c.
  4. Д.И. Илинзер Анализ хозяйственной деятельности в общественном питании / Д.И. Илинзер. — М.: Экономика, 2016. — 144 c.
Синтез креатина и креатинфосфата
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here