Состав и последовательность аминокислот

Сегодня предлагаем ознакомится со статьей на тему: состав и последовательность аминокислот с профессиональным описанием и объяснением.

Состав и последовательность аминокислот

Анализ белковых молекул

Для определения аминокислот, входящих в состав белка используют методы, основанные, как правило, на частичном или полном гидролизе полипептидной цепи. Обычно проводят кислотный или ферментативный гидролиз белка и аминокислоты анализируют различными хроматографическими методами. Таким способом можно установить количественный и качественный состав аминокислот, входящих в состав белка, но не их последовательность. Остановимся на некоторых химических способах анализа белковых молекул.

Свободные аминокислоты обнаруживают нингидринной реакцией (см. Нингидринная реакция). Эту же реакцию дают и белки, но в более жестких условиях – при кипячении с водным раствором нингидрина.

Для обнаружения пептидных связей в белках служит биуретовая реакция (реакция Пиотровского) – образование ярко-окрашенных комплексов при взаимодействии белков с гидроксидом меди (II) в присутствии щелочи. В эту реакцию вступают все пептиды, имеющие минимум две пептидные связи. Цвет комплекса, получаемый при биуретовой реакции с различными пептидами, несколько отличается и зависит от длины пептидной цепи. Пептиды с длиной цепи от четырех аминокислотных остатков и выше образуют красный комплекс, трипептиды – фиолетовый, а дипептиды – синий. Реакцию используют не только для качественного, но и для количественного определения белков.

Пептиды, содержащие ароматические и гетероароматические аминокислоты дают положительную ксантопротеиновую реакцию (реакция Мульдера) – появление желтого окрашивания при действии конц. азотной кислоты. При добавлении щелочи цвет смеси меняется на оранжевый.

Серосодержащие аминокислоты в составе белка определяют по образованию черного осадка сульфида свинца при нагревании с ацетатом свинца – сульфгидрильная реакция (реакция Фоля).

Триптофан обнаруживают при помощи реакции с п-диметиламинобензальдегидом в среде серной кислоты – реакция Эрлиха . Образующийся продукт конденсации имеет красно-фиолетовое окрашивание.

Определение С- и N-концевых аминокислот

N-Концевые аминокислоты определяют по реакции с 2,4-динитрофторбензолом или дансилхлоридом. Свободная аминогруппа N-концевой аминокислоты арилируется или ацилируется, белок гидролизуют, образовавшиеся N-(2,4-динитрофенил)- (А) или N-(5-диметиламинонафтил-1-сульфо)производные (Б) существенно отличаются по физико-химическим свойствам от остальных аминокислот, поэтому их легко отделяют и идентифицируют.

С-Концевые аминокислоты определяют методом Акароби – при нагревании пептида с гидразингидратом пептидные связи гидролизуются и образуется смесь гидразидов аминокислот. С-Концевая аминокислота не реагирует с гидразином, остается в свободном виде, ее выделяют и идентифицируют.

Удобным методом определения последовательности аминокислот (первичной структуры белка) является способ деградации полипептидной цепи с помощью фенилизотиоцианата (метод Эдмана). N-Концевые аминокислоты последовательно отщепляются от цепи в виде фенилтиогидантоинов и идентифицируются.

Состав и последовательность аминокислот

Аминокислотная последовательность инсулина

На расшифровку структуры инсулина было затрачено 10 лет (1944 – 1954 гг.).

В белки входят двадцать аминокислот, но в разных количествах и в разной последовательности. Именно последовательность аминокислот определяет трехмерную структуру белков и их функцию. С помощью гидролиза, разрывающего пептидные связи в молекуле белка, можно было найти соотношение аминокислот в ней, но как определить их последовательность, не было ясно до середины ХХ века. Эту задачу первым решил Фредерик Сенгер в 1955 г . Классическую работу он провел на молекуле инсулина – важного для медицины пептидного гормона, регулирующего содержание глюкозы в крови. Сенгер расщеплял инсулин разными протеиназами (ферментами, расщепляющими полипептидную цепь между определенными аминокислотными остатками) и получал несколько наборов коротких пептидов. В них он научился определять последовательность аминокислотных остатков, начиная с того, который был на конце цепочки (у него была свободная аминогруппа). Имея в своем распоряжении набор пептидов, Сенгер сумел определить, какие из них перекрываются, и восстановил исходную последовательность аминокислот в инсулине.

Состав и последовательность аминокислот

Реакции аминокислот по аминогруппе

Реакция с формальдегидом:

Эта реакция лежит в основе количественного определения a-аминокислот методом формольного титрования щелочью (метод Серенсена).

Реакция используется для «защиты» аминогрупп при пептидном синтезе.

Реакция с азотистой кислотой:

По объему выделившегося азота определяют количество аминогрупп в природных аминосодержащих соединениях (метод Ван-Слайка).

Решение задач четвертого типа. Определение антикодона – т РНК, последовательности аминокислотного состава белка с использованием генетического года.

Справочная информация:

Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

Молекула и-РНК синтезируется на ДНК по правилу комплементарности.

В состав ДНК вместо урацила входит тимин.

Пример 1. Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТТА­ЦАГГ­ТТ­ТАТ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

1) ДНК ТТА-ЦАГ-ГТТ-ТАТ

2) Ан­ти­ко­до­ны тРНК УУА, ЦАГ, ГУУ, УАУ.

[3]

3) По­сле­до­ва­тель­ность ами­но­кис­лот: асн-вал-глн-иле.

Пример 2. Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТАЦЦЦТ­ЦАЦТТГ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

ДНК ТАЦ ЦЦТ ЦАЦ ТТГ

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК; иРНК АУГ ГГА ГУГ ААЦ.

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим тРНК; Ан­ти­ко­до­ны тРНК УАЦ, ЦЦУ, ЦАЦ, УУГ.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот: мет-гли-вал-асн.

Пример 3. Опре­де­ли­те:по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода),

если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТГ­ТАТГ­ГА­АГТ.

Элементы ответа:

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК: ЦАЦ-АУА-ЦЦУ-УЦА — и-РНК.

[2]

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим три­пле­ты тРНК: ГУГ; УАУ; ГГА; АГУ — ан­ти­ко­до­ны т-РНК.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК (ЦАЦ-АУА-ЦЦУ-УЦА) на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот. Ами­но­кис­ло­ты: Гис-иле-про-сер

Пример 4. В био­син­те­зе белка участ­во­ва­ли т-РНК с ан­ти­ко­до­на­ми: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин, гу­а­нин, тимин, ци­то­зин в двух­це­по­чеч­ной мо­ле­ку­ле ДНК.

Элементы ответа:

1) Ан­ти­ко­до­ны т-РНК ком­пле­мен­тар­ны ко­до­нам и-РНК, а по­сле­до­ва­тель­ность нук­лео­ти­дов и-РНК ком­пле­мен­тар­на одной из цепей ДНК.

Читайте так же:  Л карнитин с протеином можно

2) т-РНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ

1 цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ

2 цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.

3) В мо­ле­ку­ле ДНК А=Т=7, число Г=Ц=8.

Пример 5. В био­син­те­зе по­ли­пеп­ти­да участ­ву­ют мо­ле­ку­лы т-РНК с ан­ти­ко­до­на­ми УГА, АУГ, АГУ, ГГЦ, ААУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин (А), гу­а­нин (Г), тимин (Т), ци­то­зин (Ц) в двух­це­по­чеч­ной мо­ле­ку­ле ДНК. Ответ по­яс­ни­те.
Элементы ответа:

1) и-РНК: АЦУ – УАЦ – УЦА – ЦЦГ – УУА (по прин­ци­пу ком­пле­мен­тар­но­сти).

2) ДНК: 1-ая цепь: ТГА – АТГ – АГТ – ГГЦ – ААТ

2-ая цепь: АЦТ – ТАЦ –ТЦА –ЦЦГ — ТТА

3) ко­ли­че­ство нук­лео­ти­дов: А — 9 (30%), Т — 9 (30%),

так как А=Т; Г — 6 (20%), Ц — 6 (20%), так как Г=Ц.

Пример 6. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода), если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТ­ГЦЦГТ­ЦАААА.

Элементы ответа:

По прин­ци­пу ком­пле­мен­тар­но­сти опре­де­ля­ем по­сле­до­ва­тель­ность иРНК (с ДНК) и тРНК (с иРНК)

1) По­сле­до­ва­тель­ность на и-РНК: ЦАЦГ­Г­ЦА­ГУ­У­УУ;

2) ан­ти­ко­до­ны на т-РНК: ГУГ,ЦЦГ,УЦА,ААА;

3) ами­но­кис­лот­ная по­сле­до­ва­тель­ность: Гис-гли-сер-фен.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8295 —

| 7248 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Определяем последовательность аминокислот с помощью таблицы генетического кода.

2) После мутации фрагмент молекулы белка будет иметь состав лей- ала- тре -лиз -асн

3) Лизин кодируется двумя кодонами ААА и ААГ, следовательно,

мутированная иРНК: ЦУЦ-ГЦА-АЦГ-ААА-ААУ или ЦУЦ-ГЦА-АЦГ-ААГ-ААУ

13)Одна из цепей ДНК имеет последовательность нуклеотидов: АТА-АГГ-АТГ-ЦЦТ-ТТТ. Определите последовательность нуклеотидов на иРНК и соответствующую последовательность аминокислот фрагмента молекулы белка. Объясните, что произойдет со структурой фрагмента молекулы белка, если второй триплет нуклеотидов выпадет из цепи ДНК. Для выполнения задания используйте таблицу генетического кода. (см. задание №1)

Ответ:1)Исходная цепь ДНК: АТА -АГГ- АТГ-ЦЦТ-ТТТ

2) и -РНК : УАУ- УЦЦ-УАЦ-ГГА- ААА

3) цепочка аминокислот в белке: тир – сер – тир – гли — лиз

4) после выпадения второго триплета произойдет укорочение молекулы белка на одну аминокислоту и молекула белка будет состоять из аминокислот: тир – тир – гли – Лиз

14)Последовательность нуклеотидов в цепи ДНК: — ААТГЦАГГТЦАЦТЦАТГ- В результате мутации одновременно выпадают второй и пятый нуклеотиды. Запишите новую последовательность нуклеотидов в цепи ДНК. Определите по ней последовательность нуклеотидов в иРНК и последовательность аминокислот в полипептиде. Для выполнения задания используйте таблицу генетического кода.

Ответ:1)Исходная цепь ДНК: ААТ-ГЦА-ГГТ-ЦАЦ-ТЦА-ТГ-

ДНК после мутации: АТГ- АГГ-ТЦА-ЦТЦ-АТГ-

2) и -РНК : УАЦ-УЦЦ-АЦУ- ГАГ- УАЦ

3) цепочка аминокислот в белке: тир – сер – тре – глу – тир

15)Фрагмент молекулы и-РНК состоит из 51 нуклеотидов. Определите число нуклеотидов в двойной цепи ДНК, число триплетов в матричной цепи ДНК и число нуклеотидов в антикодонах всех т-РНК, которые участвуют в синтезе белка. Ответ поясните.

Ответ: 1) И-РНК синтезируется на матричной цепи ДНК, поэтому в ней будет тоже 51 нуклеотид, т.е. 17 триплетов (1 триплет состоит из 3-х нуклеотидов). 2) Вторая цепь ДНК комплементарна первой, поэтому число нуклеотидов в двойной цепи ДНК содержится 102 нуклеотида. 3) Если в и-РНК содержится 51 нуклеотид, значит, в ней 17 кодонов, и столько же антикодонов в т-РНК. Число нуклеотидов в антикодонах всех т-РНК будет равно 51, так как антикодон тоже состоит из 3-х нуклеотидов.

16) Фрагмент молекулы и-РНК состоит из 50 нуклеотидов. Определите, сколько нуклеотидов входит в состав фрагмента матричной цепи ДНК. Установите, число цитозиновых, адениловых и гуаниловых нуклеотидов в молекуле ДНК , если известно, что процент тимидиловых нуклеотидов равен 16%

Ответ: 1) В составе матричной цепи ДНК 50 нуклеотидов, так как и-РНК синтезируется комплементарно матричной цепи 2) Так как в одной цепи ДНК 50 нуклеотидов, в двух цепях- 100нуклеотидов (это и есть 100%). 3) В ДНК тимин комплементарен аденину, поэтому количество аденина равно 16. На гуанин и цитозин приходится 68% (100- 32=68) в равных количествах, т.е. гуанина и цитозина в ДНК содержится по 34.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9791 —

| 7397 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Состав и последовательность аминокислот

В 1953 г. Фредерик Сэнгер ( Sanger ) определил последовательность аминокислот в белковом гормоне — инсулине (рис. 2.25). Эта работа представляет собой веху в развитии биохимии, ибо в ней впервые было показано, что белок имеет строго определенную последовательность аминокислот. Кроме того, это достижение послужило стимулом для других исследователей подвергнуть аналогичному анализу большое множество белков. И действительно, к настоящему времени установлена полная последовательность аминокислот у нескольких сотен белков. Самое поразительное, что каждый белок имеет уникальную, точно определенную последовательность аминокислот. В серии остроумных работ, проведенных в конце50-х-начале 60-х годов было обнаружено, что последовательность аминокислот в белках детерминирована генетически. Последовательность нуклеотидов в ДНК-веществе наследственности — определяет комплементарную последовательность нуклеотидов в РНК, а последняя в свою очередь определяет последовательность аминокислот в белке (гл. 25). Более того, синтез всех белков из соответствующих аминокислот имеет единый механизм.

Рис. 2.25. Последовательность аминокислот в инсулине крупного рогатого скота

Белки-называют также протеинами. Последний термин, введенный Барцелиусом в 1838 г., подчеркивает важное значение этого класса веществ. Термин образован от греческого слова рго t е ios , что означает «первостепенный». Термин «протеин» введен Мулдером (Lieben F. Geschichte der Physiologischen Chemie, Leipzig und Wien, I. Deutike, 1935, s. 359).- Прим. ред .

2.7. Экспериментальные методы определения последовательности аминокислот

Рассмотрим сначала, как можно определить последовательность аминокислот в коротком пептиде. Допустим, что пептид состоит из 6 аминокислотных остатков, расположенных в следующей последовательности: А l а-С l у-А s р-Р h е-А rg — Gly . (Для обозначения аминокислот использованы общепринятые сокращения, приведенные в табл. 2.1, стр. 23.) Прежде всего необходимо определить аминокислотный состав пептида. Для этого его гидролизуют до составляющих аминокислот нагреванием до 110°С в течение 24 ч в 6 н. НС l . Далее аминокислоты полученного гидролизата разделяют методом ионообменной хроматографии на колонке с сульфонированным полистиролом. Фракционированные аминокислоты определяют по окраске, образующейся при нагревании с нингидрином: α-аминокислоты дают с нингидрином интенсивное синее окрашивание, а иминокислоты, например, пролин-желтое. Метод ионообменной хроматографии обладает высокой чувствительностью:

Читайте так же:  Л карнитин 60000 как принимать

с его помощью можно определить даже один микрограмм аминокислоты, т. е. примерно столько, сколько содержится в одном отпечатке пальца. Количество аминокислоты пропорционально оптической плотности раствора после нагревания с нингидрином. Если требуется определить еще меньшие количества аминокислоты — порядка нескольких нанограммов, то используют флуорескамин, который реагирует с α-аминогруппой, образуя сильно флуоресцирующее соединение. О природе аминокислоты судят по объему элюции, т. е. по объему буфера, использованному для вымывания данной аминокислоты с колонии (рис. 2.26). Сравнение результатов хроматографии гидролизата со стандартной смесью аминокислот свидетельствует о том, что исследуемый пептид имеет следующий аминокислотный состав:

Видео (кликните для воспроизведения).

Скобки показывают, что речь идет о составе, а не последовательности аминокислот в пептиде.

Рис. 2.26. Аминокислоты, содержащиеся в гидролизате белка, разделяют методом ионообменной хроматографии на сульфонированном полистироле (например, дауэкс-50). Для элюции аминокислот с колонки используют буферы с возрастающим значением pH. Первым снимается с колонки аспартат, имеющий кислотную боковую цепь; аргинин с основной боковой цепью элюируется последним. По оси ординат отложено поглощение

Рис. 2.27. Определение N-концевого остатка пептида. Пептид метят фтординитробензолом (реактив Сэнгера) и затем гидролизуют. ДНФ-производное аминокислоты (в приведенном примере ДНФ-аланин) идентифицируют по хроматографическим характеристикам

Для определения в белке или пептиде концевого остатка, несущего аминогруппу, его метят с помощью соединения, образующего стабильную ковалентную связь с азотом аминогруппы (рис. 2.27). Впервые для этой цели Сэнгер использовал фтординитробензол (ФДНБ), реагирующий с незаряженной α-NН2-группой с образованием динитрофенильного (ДНФ) производного пептида желтого цвета. Связь между ДНФ и концевой аминогруппой стабильна в условиях, используемых для гидролиза пептидных связей. Поэтому при гидролизе ДНФ-производного пептида А l а-С l у-А s р-Р h е- Gly в 6 н. НС l высвобождается ДНФ-аминокислота, которую можно идентифицировать хроматографически как ДНФ-аланин.

Для идентификации N-концевых аминокислот в настоящее время часто используют дансилхлорид, который при взаимодействии с аминогруппой дает стабильное, интенсивно флуоресцирующее сульфамидное производное. Этот метод позволяет выявить N-концевую аминокислоту (после кислотного гидролиза пептидных

связей), присутствующую в таком незначительном количестве, как несколько нанограммов.

Рис. 2.28. Деградация по Эдману. От пептидной цепи отщепляют меченый N-концевой остаток аминокислоты (ФТГ-аланин на первой ступени деградации). Остаток пептидной цепи при этом не гидролизуется. На второй ступени деградации определяют следующий N-концевой аминокислотный остаток. Еще три ступени деградации по Эдману позволят установить всю последовательность аминокислот во взятом пептиде

Стратегию анализа последовательности аминокислот в белках можно определить, как «разделяй и властвуй». Белок подвергают специфическому расщеплению на более короткие пептиды, последовательность аминокислот в которых определяют по Эдману. Специфическое расщепление можно производить химическими или ферментативным методами. Так, Б. Уиткоп (В. Witkop ) и Э. Гросс (Е. Gross ) обнаружили, что бромистый циан ( CNBr ) расщепляет полипептидную цепь только по пептидной связи, образованной карбоксильной группой остатка метионина (рис. 2.29). Если в белке содержится 10 метиониновых остатков, то после обработки бромистым цианом обычно получается 11 пептидов. Высокоспецифическое расщепление достигается также с помощью трипсина-протеолитического фермента поджелудочной железы. Трипсин расщепляет полипептидные цепи по пептидной связи, образованной карбоксильной группой остатков аргинина и лизина (рис. 2.30). В результате белок, содержащий 9 остатков лизина и 7 остатков аргинина, после расщепления трипсином распадается на 17 пептидов. Каждый из этих пептидов, кроме пептида, расположенною на карбоксильном конце белка, будет кончаться аргинином или лизином. Ряд других способов специфического расщепления полипептидных цепей приведен в табл. 2.2.

[1]

Рис. 2.29. Бромистый циан расщепляет полипептиды по карбоксильной группе метиониновых остатков

Рис. 2.30. Трипсин гидролизует полипептиды по карбоксильной группе остатков лизина и аргинина

Таблида 2.2. Специфическое расщепление полипептидов

Пептиды, полученные при специфическом химическом или ферментативном расщеплении белка, разделяют методами хроматографии. Далее последовательность аминокислот в каждом из пептидов определяют методом Эдмана. Таким образом, достигается этап, когда последовательность аминокислот в отдельных пептидах (фрагментах белка) известна, но остается невыясненной последовательность самих пептидов. Последнюю устанавливают с помощью так называемых перекрывающихся пептидов (рис. 2.31). При этом используют уже не трипсин, а какой-либо фермент, расщепляющий полипептидную цепь в других участках, например, химотрипсин, который расщепляет пептидные связи главным образом покарбоксильным группам ароматических и других больших неполярных аминокислотных остатков. Пептиды, образующиеся под действием химотрипсина, неизбежно перекрывают два или более триптических пептида, что используется для установления их последовательности. Таким путем полностью определяют последовательность аминокислот в белке.

Рис. 2.31. Пептид, образующийся при химотриптическом расщеплении, перекрывает два триптических пептида; благодаря этому можно установить последовательность расположения пептидов

Описанные методы применимы к белкам, состоящим из одной полипептидной цепи, не имеющей дисульфидных связей. В тех же случаях, когда в белке имеются дисульфидные связи или более одной полипептидной цепи, то необходимы дополнительные методические приемы. Например, если белок содержит две или более полипептидные цепи, соединенные нековалентными связями, то, воздействуя денатурирующими агентами, такими, как мочевина или гуанидингидрохлорнд, вызывают диссоциацию цепей. Диссоциированные цепи разделяют и только после этого приступают к определению последовательности аминокислот в каждой из них. Если же полипептидные цепи соединены ковалентными дисульфидными связями, как это имеет место в инсулине, то их окисляют надмуравьиной кислотой; при этом дисульфидные связи разрываются и образуются остатки цистеиновой кислоты (рис. 2.32).

Рис. 2.32. Дисульфиды расщепляются надмуравьиной кислотой

Анализ структуры белков удалось значительно ускорить путем создания секвенатора-специального прибора для автоматического определения последовательности аминокислот. При таком определении белок в виде тонкой пленки помещают во вращающийся цилиндрический сосуд, где он подвергается деградации по Эдману. Реактивы и растворители проходят над иммобилизованной белковой пленкой, а высвобождающиеся ФТГ-аминокислоты подвергаются жидкостной хроматографии при высоком давлении и таким образом идентифицируются. Один цикл деградации по Эдману занимает при этом менее двух часов. С помощью секвенатора можно определить аминокислотную последовательность полипептида или белка, содержащего до ста аминокислотных остатков,

Различия в последовательностях аминокислот

Сходства и различия в последовательностях аминокислот в полипептидных цепях гомологичных белков, принадлежащих разным видам, могут служить определённой и количественной мерой степени молекулярной дифференциации. Сейчас уже собрано множество данных о гомологичности молекул гемоглобина, миоглобина, цитохрома с, иммуноглобулина и других белков (см. интересные обзоры Dayhoff, 1968, 1969, 1972, 1978*). Здесь мы рассмотрим лишь несколько типичных примеров.

Читайте так же:  Норма глютамина в сутки

Гемоглобин взрослого человека состоит из двух идентичных полипептидных α-цепей, двух идентичных (β-цепей и присоединенных к ним групп тема. Каждая α-цепь содержит по 141 аминокислоте, а каждая β-цепь—по 146. В гемоглобине здорового человека каждое положение в цепи занято определённой аминокислотой. Последовательность аминокислот известна. Один ген детерминирует последовательность аминокислот в α-цепях, а другой, отдельный, ген — их последовательность в β-цепях. Отметим попутно один интересный факт: хотя α- и β-цепи гемоглобина человека различаются между собой, их аминокислотные последовательности сходны и, вероятно, возникли в результате дивергенции от какой-то общей предковой полипептидной цепи (Ingram, 1963*).

Таблица 32.1. Различия в аминокислотных последовательностях гепоглобина между человеком и друдими млекопитающими
Пара видов. Различия
α-цепь β-цепь
Человек — шимпанзе
Человек — горилла
Человек — макак-резус
Человек — макак 5–7
Человек — мышь 13–15
Человек — кролик
Человек — собака 16–17
Человек — лошадь
Человек — лама
Человек — свинья
Человек — корова
Человек — овца
Человек — коза 14–16 18–20
Человек — гривистый баран 15–16 21–23
Человек — гиганский серый кенгуру

Нас здесь больше интересует степень дифференциации гемоглобиновых цепей у разных видов. Возьмем в качестве эталона гемоглобин здорового взрослого человека. Число различий по аминокислотам между человеком и разными другими видами млекопитающих представлено в табл. 32.1, Как показывает эта таблица, у человека и у шимпанзе последовательности аминокислот и в α-, и в β-цепях идентичны. Гемоглобины человека и гориллы различаются лишь по двум аминокислотам, по одной в каждой цепи. Человек и обезьяны довольно близки друг к другу по строению гемоглобина. Различия в строении гемоглобина между человеком и представителями других отрядов млекопитающих гораздо шире — от 10 до 26% (табл. 32.1).

Гемоглобин человека отличается от гемоглобина лягушки и карпа сильнее, как и следовало ожидать. Различия в аминокислотной последовательности β-цепи между человеком и лягушкой составляют 46%, а различия в α-цепи между человеком и карпом — 50% (Dayhoff, 1972*).

Другой белок — дыхательный фермент цитохром с — локализован в митохондриях эукариотических организмов и очень удобен для сравнительно-биохимических исследований представителей разных типов и разных царств. В табл. 32.2 приведены некоторые данные относительно молекулярных различий по цитохрому с. Человек служит эталоном для одной группы сравнений, а дрозофила — для другой. Здесь снова можно отметить общую корреляцию между молекулярными различиями и степенью филогенетического родства.

Дейхоф (Dayhoff, 1969*) и её коллеги указывают, что наблюдаемое число различий в аминокислотном составе между гомологичными белками не обязательно должно быть равно числу аминокислот, действительно замещённых в процессе эволюционной дивергенции этих белков. В тех случаях, когда две полипептидные цепи различаются по многим аминокислотам, эволюционное расстояние может быть больше, чем наблюдаемые различия. Дейхоф и её коллеги предложили единицу эволюционного расстояния, названную ими РАМ-единицей (PAM-unit «accepted point mutations per 100 links», т. е. число фиксированных точковых мутаций на 100 звеньев цепи); эта единица должна служить для того, чтобы можно было дать скорректированную оценку эволюционной дивергенции на молекулярном уровне. Соотношение между наблюдаемым числом различий в аминокислотном составе на 100 звеньев цепи и эволюционным расстоянием, выраженным в РАМ-единицах, выглядит следующим образом (Dayhoff, 1969*):

Число аминокис- лотных замен РАМ-единицы

Хьюбби и Трокмортон (Hubby, Throckmorton, 1965*) использовали электрофоретические методы для определения сходства или различия белков в группе Drosophila virilis. Было проведено сравнение многих белков и детерминирующих их генов для 10 видов, относящихся к этой группе (D. virilis, D. americana, D. texana и др.). Среди исследованных белков 60% оказались общими для всех видов этой группы. Несколько меньшая доля — белки, общие для близкородственных подгрупп. Остальная часть изученных белков специфична для каждого отдельного вида; эта доля равна 2.6% для D. virilis, 5.3% —для D. americana и достигает 28.2% для D. littoralis.

В другой серии работ, в которых использовался гель-электрофорез, 4 вида-двойника группы Drosophila willistoni сравнивали по 14—28 ферментным локусам (Ayala et al., 1970; Ayala, Tracey, 1974*). Оказалось, что эти виды различаются примерно по половине изучавшихся локусов.

Электрофоретические данные по нескольким или многим локусам для двух популяций или видов могут быть выражены через индекс, известный под названием показателя генетической идентичности (I) (Nei, 1972*). Этот показатель служит мерой доли идентичных генов у двух сравниваемых популяций или видов. Значения I лежат в пределах от 0 до 1; I=1 означает, что обе популяции содержат одни и те же аллели с одинаковыми частотами, а I = 0 — что у этих популяций нет общих аллелей (Nei, 1972*).

Таблица 32.2. Число различий в аминокислотных последовательностях цитохрома С человека и других организмов. (по данным Dauhoff, 1969*)
Виды Число различий
Человек — макак-резус
Человек — лошадь
Человек — корова, овца
Человек — собака
Человек — кролик
Человек — курица, индейка
Человек — голубь
Человек — каймановая черепаха
Человек — гремучая змея
Человек — лягушка-бык
Человек — тунец
Человек — акула
Человек — дрозофила
Человек — мясная муха
Человек — бабочка (тутовый шелкопряд)
Человек — пшеница
Человек — Neurospora
Дрозофила — мясная муха
Дрозофила — бабочка (тутовый шелкопряд)
Дрозофила — пятиконечный бражник
Дрозофила — акула
Дрозофила — голубь
Дрозофила — пшеница

Пример генетической идентичности близких видов у растений рода Tragopogon представлен в табл. 32.3 (Roose, Gottlieb, 1976*). В других родах растений часто встречаются пары видов со сходными значениями I, достигающими иногда 0.9 (см. Gottlieb, 1977*).

Широко распространено допущение, что электрофоретические методы дают надёжные оценки общего сходства или дивергенции между особями или группами. Обнаруженные такими методами различия по ферментным генам считают репрезентативными для генотипа в целом. Это допущение подразумевается в коэффициентах генетической идентичности и генетического расстояния (Nei, 1972*), которые приравнивают электрофоретическую меру дифференциации к генетической.

В некоторых случаях это допущение, по-видимому, оправданно. Так, Джейн и Сингх (Jain, Singh, 1979*) обнаружили хорошее совпадение электрофоретических данных, с одной стороны, и морфологических и цитогенетических показателей родства — с другой, между 15 видами овса (Avena).

Читайте так же:  Креатин и бцаа можно смешивать
Таблица 32.3. Генетическая идентичность (I) видов Tragopodon (Compositae) (Roose, Gottlieb, 1976*)
Пара видов I
T. dubiusT. porrifolius 0.50
T. dubiusT. pratensis 0.62
T. porrifoliusT. pratensis 0.53

Известно, однако, немало случаев несоответствия морфологических и электрофоретических данных. Примерами служат: среди животных рыбы Cyprinodon (Turner, 1974*), улитки Partula (Murray, Clarke 1980*) и гоминоиды (см. ниже); а среди растений— Hordeum (Giles, 1984*), Mimulus (Vickery, Willstein, 1987*), Tetramolopium (Crawford et al., 1987*) и Chenopodium (Walters, 1988*). В каждом из этих примеров морфологические различия между популяциями или видами довольно значительны, тогда как различия по ферментам, выявляемые методом электрофореза, невелики.

Подобные факты заставляют считать, что во многих недавних работах ценность электрофоретических данных для оценки эволюционных связей и филогении сильно преувеличивалась. Электрофоретические данные можно использовать в дополнение к морфологическим данным, но не вместо них. Такое мнение высказали Карсон (Carson, 1977*), Грант (Grant, 1977*), Мюррей и Кларке (Murray, Clarke, 1980*), Джайлз (Giles, 1984*), Викери и Вулстейн (Vickery, Willstein, 1987*).

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Пример решения задач. Приведите графическую модель гена, если белковая молекула имеет следующий состав и последовательность аминокислот: глицин – лизин – пролин – серин.

Приведите графическую модель гена, если белковая молекула имеет следующий состав и последовательность аминокислот: глицин – лизин – пролин – серин.

Белок синтезируется по матрице, роль которой выполняет и-РНК, образуемая в процессе транскрипции с определённого участка ДНК (гена). Запишем возможную последовательность нуклеотидов соответствующего участка и-РНК в соответствии с генетическим кодом, приведённым в таблице 13.

Белок глицин лизин пролин серин
Возможные триплеты и-РНК ГГУ ААА ЦЦУ УЦУ
ГГЦ ААГ ЦЦЦ УЦЦ
ГГА ЦЦА УЦА
ГГГ ЦЦГ УЦГ
АГУ
АГЦ
Возможное количество триплетов

Приведенные данные свидетельствуют, что участок белка с указанной последовательностью аминокислот мог образоваться в процессе трансляции у 192 вариантов и-РНК (4 × 2 × 4 × 6 = 192), равно как и такого же разнообразия генов. Следовательно, графически можно изобразить 192 варианта гена, содержащих информацию о данной молекуле белка.

Возьмём один из возможных вариантов триплетов и-РНК и по нему построим последовательность нуклеотидов исходной нити ДНК (гена) и комплементарной ему нити.

ДНК (ген) ГГТ ААА ЦЦТ ТЦТ
ЦЦА ТТТ ГГА АГА
и-РНК ГГУ ААА ЦЦУ УЦУ
Белок глицин лизин пролин серин

В ряде случаев бывает необходимо определить последовательность аминокислот синтезируемого белка по кодонам и-РНК. Для этого удобно пользоваться рисунком 41.

Первая буква кодона расположена в центральном круге, вторая – в первом кольце и третья – во втором. В наружном кольце записаны сокращенные названия аминокислот.

Задачи

1. В одной из цепочек молекулы ДНК нуклеотиды расположены в такой последовательности: ТАГАГТЦЦЦГАЦАЦГ. Какова последовательность нуклеотидов в другой цепочке этой же молекулы? (ответ)

2. Белковая цепочка состоит из следующих аминокислот: валин – лейцин– гистидин – серин – изолейцин. Какова последовательность нуклеотидов в составе гена, кодирующего данный белок? (ответ)

3. В состав белка входят 400 аминокислот. Определить какую длину имеет контролирующий его ген, если расстояние между двумя нуклеотидами в молекуле ДНК составляет 0,34 нм? (ответ)

4. Определите порядок чередования аминокислот в молекуле белка, если известно, что он контролируется такой последовательностью азотистых оснований ДНК: ЦЦТАГТТТТААЦ. . Какой станет последовательность аминокислот при удалении из гена четвертого азотистого основания? (ответ)

5. Участок молекулы ДНК имеет следующую последовательность нуклеотидов: АГТАГЦЦЦТТЦЦ. . Напишите схему транскрипции и трансляции. Как она изменится при инверсии участка хромосомы между 4 и 8 нуклеотидом? (ответ)

6. Химическое обследование показало, что 30 % общего числа нуклеотидов информационной РНК приходится на урацил, 26 % на цитозин и 24 % ‑ на аденин. Что можно сказать о нуклеотидном составе соответствующего участка двухцепочечной ДНК? (ответ)

Тема 12. Цитоплазматическая наследственность

1. Выявить структуры клетки, имеющие ДНК.

2. Уяснить особенности механизма передачи потомству цитоплазматических наследственных факторов.

3. Особенности строения женской и мужской половых клеток растений.

4. Выясните возможности цитоплазматической мужской стерильности (ЦМС) в получении гетерозисных гибридов.

5. Решение задач.

1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 114-124.

2. Абрамова З.В. Практикум по генетике. – 4-е изд., перераб. и доп. – Л. : Агропромиздат, Ленингр. отд-ние, 1992. – С. 109-113.

3. Гуляев Г.В. Задачник по генетике. – М. : Колос, 1973. – С. 27-28.

Пояснение к заданиям. Известно, что некоторое количество наследственного материала клетки находится в виде кольцевых молекул ДНК митохондрий и пластид, а также некоторых других внеядерных генетических элементов. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования впервые был описан в 1908 г. К. Корренсом.

Одним из ярких примеров цитоплазматической наследственности является цитоплазматическая мужская стерильность (ЦМС), обнаруженная у многих растений (кукурузы, лука, свёклы, льна и др.) и используемая в получении гетерозисных гибридов (рисунок 46).

Цитоплазматическая мужская стерильность была открыта у кукурузы в 30-х годах одновременно в СССР М.И. Хаджиновым и в США М. Родсом. Установлено, что цитоплазма, обусловливающая стерильность пыльцы (Cyt S ) может проявить своё действие только при сочетании с рецессивными ядерными генами (rf) в гомозиготном состоянии (rfrf). Если же этот ядерный ген представлен доминантной аллелью Rf, либо цитоплазма обеспечивает формирование фертильной пыльцы (Cyt N ), то растения Cyt s RfRf или Cyt s Rfrf, Cyt N rfrf и др. имеют нормальную пыльцу. При этом ген Rf не изменит структуру и специфичность цитоплазмы Cyt S , а лишь затормозит проявление её действия. Поэтому считают, что фертильная отцовская форма Cyt N rfrf является «закрепителем» стерильности, а фертильная форма Cyt N RfRf – «восстановитель»

Рисунок 46 –Создание двойных межлинейных гибридов с использованием ЦМС

фертильности.

У кукурузы известно несколько типов ЦМС, например, техасский (Т), при котором полностью стерильные пыльники не выступают наружу, и молдавский тип, или USDA (S), при котором часть или все пыльники выступают наружу.

У кукурузы фертильная пыльца образуется на основе нормальной цитоплазмы (Cyt N ), а наследственная стерильность пыльцы обусловлена наличием стерильной цитоплазмы (Cyt S ). Доминантный ген (Rf) восстанавливает фертильность, и стерильная цитоплазма проявляет свое действие только в сочетании с рецессивными аллелями этого гена (rfrf).

Читайте так же:  Информативная часть начинается с аминокислоты мет

1. Определите соотношение фертильных и стерильных растений в следующих скрещиваниях: а) Cyt S rfrf × Cyt S RfRf; б) Cyt S rfrf × Cyt N Rfrf; в) Cyt S Rfrf × Cyt N Rfrf; г) Cyt S rfrf × Cyt N rfrf. (ответ)

2. При скрещивании растений со стерильной пыльцой с растением, у которого нормальная пыльца, получено потомство, состоящее на ½ из фертильных и на ½ из стерильных растений. Определить генотипическую систему отцовского родителя. (ответ)

3. У пшеницы развитие признака стерильности цитоплазмы находится под контролем двух пар генов. Взаимодействие двух доминантных генов Rf1 и Rf2 восстанавливает фертильность и Cyt S проявиться не может. Растения с одним доминантным геном (Rf1 или Rf2) в гетерозиготном или гомозиготном состоянии – полустерильны. Определить характер расщепления по фертильности-стерильности при самоопылении указанных ниже растений: а)Cyt S Rf1rf1rf2rf2; б)Cyt S Rf1Rf1rf2rf2; в)Cyt S Rf1rf1Rf2rf2; г)Cyt S Rf1Rf1Rf2rf2. (ответ)

Тема 13. Генетическая структура популяции

1. Уяснить понятие популяции.

2. Запомнить формулы для определения частот доминантного и рецессивного генов одной аллельной пары, уравнение Харди-Вайнберга.

3. Решение задач по вычислению генной, генотипической и фенотипической структуры популяции.

1. Гуляев Г.В. Генетика. – 3-е изд., перераб. и доп. – М. : Колос, 1984. – С. 311-327.

2. Гуляев Г.В. Задачник по генетике. – М. : Колос, 1973. – С. 31-33.

3. Абрамова З.В. Практикум по генетике. – 4-е изд., перераб. и доп. – Л. : Агропромиздат, Ленингр. отд-ние, 1992. – С. 164-167.

4. Щеглов Н.И. Сборник задач и упражнений по генетике (с решениями). – Краснодар : МП «Экоивест», 1991. – 34 с.

Пояснение к заданиям.Популяция – это совокупность особей одного вида, заселяющих определённую территорию, свободно скрещивающихся друг с другом и в той или иной степени изолированных от других совокупностей. У перекрёстноопыляющихся растений популяция формируется путём свободного скрещивания особей с разным генотипом. Наследственная структура следующего поколения воспроизводится на основе разнообразных сочетаний гамет при оплодотворении. Поэтому численность особей того или иного генотипа в каждом поколении будет определяться частотой встречаемости разных гамет, произведённых генотипически различными родительскими особями.

Математическую зависимость между частотами аллелей и генотипов в популяции установили два учёных, в честь которых она и была названа законом Харди-Вайнберга. Из этого закона следует, что состав популяции в отношении исходного соотношения аллелей остаётся постоянным от одного поколения к другому. Поэтому, если обозначить частоту доминантного аллеля А,равную p, а частоту рецессивного аллеля а,равную q, то pА + qа = 1.Это уравнение позволяет определить генную структуру популяции. Зная частоту одного из генов, можно вычислить частоту другого гена и частоты всех генотипов и фенотипов.

Частота отцовских гамет
Рисунок 47 – Геометрическое представление взаимосвязи между частотами аллелей и частотами генотипов в соответствии с законом Харди-Вайнберга

Генотипическую и фенотипическую структуру популяции определяют по уравнению Харди-Вайнберга – p 2 AA + 2pqAa + q 2 aa(рисунок 47).

Несмотря на то, что закономерности, установленные Харди-Вайнбергом, правильны только для идеальной популяции, этот закон очень важен и для анализа динамики генетических преобразований естественных популяций и для изучения эволюционных процессов.

Из закона Харди-Вайнберга вытекает следующее:

а) число гомозиготных доминантных особей равно квадрату частоты доминантного гена (p 2 );

б) число гомозиготных рецессивных особей равно квадрату частоты рецессивного гена (q 2 );

в) число гетерозиготных особей равно удвоенному произведению частот обоих аллелей (2рq).

Процессы формирования популяции и её динамика составляет микроэволюцию. Движущими эволюционными факторами, которые определяют изменение генетического состава популяции из поколения в поколение, являются следующие:

2) естественный отбор,

Мутации привносят в популяцию новый генотип, который будет вовлечён в систему скрещиваний и полученное потомство подвергнуто отбору. Если мутационное изменение имеет преимущество над другими признаками, то эта форма получит распространение в данной популяции, а если мутантная форма уступает ранее существовавшим (а такое случается чаще), то она будет сразу или постепенно элиминирована (устранена).

Рисунок 48 – Характер действия основных типов отбора (затемнённые области – фенотипы, элиминируемые отбором): А – стабилизирующий; Б – дизруптивный; В – движущий

В зависимости от складывающихся особенностей изменения генотипов в популяции действие отбора можно охарактеризовать тремя типами. Стабилизирующий отбор элиминирует крайние (пограничные) формы фенотипов. Дизруптивный отбор проявляется при меньшей приспособленности центральной группы растений вариационного ряда распределения. В результате образуются две или большее количество групп растений (новых популяций). Движущий отбор связан, как правило, с изменившимися условиями произрастания и реакцией популяции на преимущественное развитие определённых групп вариационного ряда, элиминацией противоположных групп и своеобразным «смещением» центра вариационного ряда (рисунок 48).

Видео (кликните для воспроизведения).

Дрейф генов можно представить при изоляции группы организмов на каком-нибудь небольшом острове или при уничтожении большинства особей на какой-либо территории в результате стихийного бедствия (пожар, эпифитотии вредных микроорганизмов, массовое распространение вредителей и др.). Дальнейшее размножение организмов и эволюция популяции пойдёт на основе случайно оставшегося количества некоторых представителей бывшей сбалансированной популяции по различным группам растений.

Миграции. В любую популяцию путём скрещивания могут включиться, мигрировать генотипы из другой пограничной популяции. Это приведёт к изменению частоты имевшихся аллелей и к сглаживанию границ между популяциями. В популяцию могут также мигрировать из другой новые, ранее отсутствовавшие в ней гены. Это ещё в большей степени усиливает генетическое разнообразие популяции. Наследственная структура каждого следующего поколения воспроизводится на основе разнообразных сочетаний гамет при оплодотворении. Поэтому численность особей того или иного генотипа в каждом поколении будет определяться частотой встречаемости разных гамет, произведённых генотипически различными родительскими особями.

Источники


  1. Красикова, И. С. Гимнастика для ленивых / И.С. Красикова. — М.: Корона Принт, 2003. — 144 c.

  2. Дубровский, В. И. Спортивная медицина / В.И. Дубровский. — М.: Владос, 2005. — 62 c.

  3. Адамович, Геннадий Гимнастика славянских чаровниц / Геннадий Адамович. — М.: Ладога-100, 2006. — 208 c.
Состав и последовательность аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here