Состоят из остатков молекул аминокислот

Сегодня предлагаем ознакомится со статьей на тему: состоят из остатков молекул аминокислот с профессиональным описанием и объяснением.

После изучения темы «Белки» контрольной работы не предусмотрено, однако вполне уместен контроль знаний в форме теста.

1.

Мономерами молекул белка являются:

а) глюкоза; б) жирные кислоты;

в) глицерин; г) аминокислоты.

2. Структурная особенность молекул аминокислот, отличающая их друг от друга:

а) радикал; б) аминогруппа;

в) карбоксильная группа; г) нитрогруппа.

3. В первичной структуре молекул белка остатки аминокислот соединены между собой посредством следующей химической связи:

а) дисульфидная; б) пептидная;

в) водородная; г) ионная.

4. Синтез белков происходит в органоидах клетки, называемых:

а) хлоропласты; б) рибосомы;

в) митохондрии; г) аппарат Гольджи.

5. При расщеплении 1 г белка освобождается количество энергии (кДж):

а) 17,6; б) 38,9; в) 44,5; г) 56,7.

6. При последовательной обработке белка растворами щелочи и сульфата меди(II) (биуретовая реакция) появляется:

а) желтое окрашивание;

б) красно-фиолетовая окраска;

[1]

в) черный осадок;

г) осадок голубого цвета.

7. Составьте формулу дипептида, состоящего из остатков аминоуксусной кислоты (глицина) и
2-амино-3-гидроксипропановой кислоты (серина).

8. Напишите схему реакции гидролиза трипептида – глицилсерилаланина (аланин –
2-аминопропановая кислота).

1.

Общепринятое число аминокислот, участвующих в синтезе белков:

а) 35; б) 50; в) 20; г) 23.

2. Для всех аминокислот две общие структурные единицы:

а) радикал; б) аминогруппа;

в) карбоксильная группа; г) гидроксигруппа.

3. Пространственная конфигурация белковой молекулы, напоминающая спираль (вторичная структура белка), образуется благодаря многочисленным:

а) дисульфидным связям;

б) пептидным связям;

в) водородным связям;

г) сложноэфирным мостикам.

4. Процесс необратимого свертывания белков называется:

[3]

а) денатурация; б) полимеризация;

в) поликонденсация; г) гибридизация.

5. Первым белком, у которого удалось расшифровать первичную структуру (в 1954 г.), был:

а) казеин; б) инсулин;

в) глиадин; г) кератин.

6. При действии концентрированной азотной кислоты на белки (ксантопротеиновая реакция) появляется:

а) желтое окрашивание;

б) красно-фиолетовая окраска;

в) черный осадок;

г) осадок голубого цвета.

7. Составьте формулу дипептида, состоящего из остатков аминокислот – аланина и лейцина
(2-амино-4-метилпентановой кислоты).

8. Напишите схему реакции гидролиза трипептида – аланиллейцилглицина.

7

8

7

8

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Читайте так же:  Содержание аминокислот в продуктах

Аминокислоты — строительный материал белка

Человек, который заинтересовался понятием белков, всегда приходит к понятию аминокислот, так как аминокислоты являются строительным материалом для белка. Это будет рассмотрено в данной статье, а также значения некоторых сопутствующих иностранных слов – пептид, полипептид, протеин.

Понятие аминокислоты

Общая структура аминокислот

В общем смысле под аминокислотами понимают органические кислоты, содержащие одну или несколько аминогрупп (-NH2). Из этих всех аминокислот нас будут интересовать только аминокарбоновые, так как именно они являются строительным материалом белков (а есть еще и аминосульфоновые, аминофосфоновые, аминоарсиновые). В таком контексте аминокарбоновые кислоты принято называть просто аминокислоты. Исходя из этого, можно дать следующее определение: аминокислоты — это органические соединения, в молекуле которых одновременно содержатся карбоксильные ( -СООН) и аминные группы, связаны с одним и тем же атомом углерода. Аминокислоты отличаются друг от друга строением только одной части молекулы, а именно боковой группы, обозначаемой в общей структурной формуле символом R.

Понятие пептида

Две молекулы одной и той же или разных аминокислот могут ковалентно связываться друг с другом при помощи замещенной амидной связи, называемой пептидной связью, с образованием дипептида.

20 аминокислот, из которых строятся белки

Пептидная связь образуется путем отщепления компонентов молекулы воды от карбоксильной группы одной аминокислоты и аминогруппы другой аминокислоты под действием сильных конденсирующих агентов. Три аминокислоты могут соединиться аналогичным образом при помощи двух петидных связей и образовать трипептид; точно также можно получить тетрапептиды и пентапептиды. Если таким способом соединить большое число аминокислот, то возникает структура, называемая полипептидом.

Аминокислотные звенья, входящие в состав пептида, обычно называют остатками (они уже не являются аминокислотами, так как у них не хватает одного атома водорода в каждой аминогруппе и двух атомов – кислорода и водорода – в каждой карбоксильной группе). Таким образом, можно дать следующее определение: пептиды (от греч. peptós — сваренный, переваренный) — это органические вещества, состоящие из остатков аминокислот, соединённых пептидной связью. Количество аминокислот в пептиде может сильно варьировать и в соответствии с их количеством различают:

  • олигопептиды ( молекулы, содержащие до десяти аминокислотных остатков; иногда в их названии упоминается количество входящих в их состав аминокислот, например, дипептид, трипептид, пентапептид и др.);
  • полипептиды ( молекулы, в состав которых входит более десяти аминокислот);
  • белки (соединения, содержащие более 50-90 аминокислотных остатков).

Однако это деление условно и указанные границы у разных источников могут отличаться.

Понятие белков

Из выше сказанного следует, что белками являются полипептиды с большим количеством аминокислотных остатков (от 50-90). Дадим другое определение белка.

Белками называют высокомолекулярные органические соединения (полимеры), молекулы которых построены из остатков аминокислот, число которых очень сильно колеблется и иногда достигает нескольких тысяч.

Как синоним слова белки часто используют слово протеин (от греч. protas – первый, главный). Каждый белок обладает своей, присущей ему последоватеьностью расположения аминокислотных остатков.

В организме встречается более ста видов аминокислот. Все они так или иначе участвуют в обменных процессах, но в структуру белка входят всего лишь 20 различных аминокислот; такие аминокислоты еще называют протеиногенными. На рисунке представлены все 20 протеиногенных аминокислот: глицин, аланин, серин, валин, треонин, лейцин, цистеин, изолейцин, метионин, лизин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин, аргинин, пролин, фенилаланин, тирозин, триптофан, гистидин.

В количественном отношении белки занимают первое место среди всех макромолекул, содержащихся в живом организме; на их долю приходится не менее половины сухого веса клетки. Биологические функции белков крайне разнообразны. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин, глиадин, зеин) и другие функции. Среди белков встречаются антибиотики и вещества, оказывающие токсическое действие.

Белки – важнейшая составная часть пищи человека и животных. Когда белок поступает в организм с пищей, то не усваивается непосредственно, а расщепляется под воздействием пищеварительных ферментов до аминокислот, из которых организм строит нужные белки.

В связи с этим встает ряд вопросов, которые уже выходят за рамки данной статьи, но обязательно будут рассмотрены вскоре. Мы лишь перечислим их: о важности наличия полного набора из 20 аминокислот, о полноценности белков, о заменимых и незаменимых аминокислотах, как строительном материале белка, о процессах биосинтеза белка, о нарушениях в усвоении белка, о продуктах, богатых на белок.

§ 3. Биополимеры. Белки, их строение

Состав белков. Белки — обязательная составная часть всех клеток. В состав этих биополимеров входят мономеры 20 типов. Такими мономерами являются аминокислоты, которые получили свое название потому, что содержат и аминогруппу (—NH2), и кислотную карбоксильную группу (—СООН). Каждая из 20 аминокислот имеет одинаковую часть, включающую обе эти группы и отличается от любой другой особой химической группировкой, так называемой R-группой, или радикалом (рис. 4).

Рис. 4. Строение аминокислот — мономеров белковых молекул. Желтым цветом выделены радикалы (R). Звездочками помечены незаменимые аминокислоты, которые не синтезируются в клетках человека, а должны поступать в организм с пищей

Образование линейных молекул белков происходит в результате соединения аминокислот друг с другом. Карбоксильная группа одной аминокислоты сближается с аминогруппой другой, и при отщеплении молекулы воды между аминокислотными остатками возникает прочная ковалентная связь, называемая пептидной (рис. 5). Соединение, состоящее из большого числа аминокислот, называется полипептидом. Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300—500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3—8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Читайте так же:  Жиросжигатели для мужчин спортивное питание цены

Рис. 5. Соединение аминокислот в полипептидную цепь

Строение белков. Выделяют первичную, вторичную, третичную и четвертичную структуры белков (рис. 6).

Первичная структура (рис. 6, I) определяется порядком чередования аминокислот в полипептидной цепи. Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300—500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

В живой клетке многие молекулы белков или их отдельные участки представляют собой не вытянутую нить, а спираль с одинаковыми расстояниями между витками. Такая спираль представляет собой вторичную структуру белковой молекулы (рис. 6, II).

Между группами N—Н и С=0, расположенными на соседних витках, возникают водородные связи. Они намного слабее ковалентных, но, повторенные многократно, скрепляют регулярные витки спирали.

Спираль обычно свернута в клубок. Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные R-группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы. В результате взаимодействия различных остатков аминокислот спирализованная молекула белка образует клубок — третичную структуру (рис. 6, III). Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.

Наконец, некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 6, IV).

Рис. 6. Схема строения белковой молекулы
I — первичная структура; II — вторичная структура; III — третичная структура; IV — четвертичная структура

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений pH, а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной (нативной) структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т. е. ренатурироватъ.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости — важнейшего свойства всех живых существ.

  1. Рассмотрите рисунок 6. Что характерно для каждого уровня организации белковой молекулы?
  2. Каждый вид живых организмов имеет свой уникальный набор белковых молекул. Чем объясняется многообразие белков?
  3. В чем отличие биополимеров белков от биополимеров углеводов? В чем их сходство?

Биология и медицина

Белки: общие сведения

Белки — это нерегулярные полимеры, мономерами которых являются аминокислоты. В состав большинства белков входят 20 разных аминокислот. В каждой из них содержатся одинаковые группировки атомов: аминогруппа -NH2 и карбоксильная группа -СООН. Участки молекул, лежащие вне амино- и карбоксильной групп, которыми и отличаются аминокислоты, называют радикалами (R).

В клетке находятся также свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления белков пищи пищеварительными ферментами или собственных запасных белков. Соединение аминокислот происходит через общие для них группировки: аминогруппа одной аминокислоты соединяется с карбоксильной группой другой аминокислоты, при их соединении выделяется молекула воды. Между соединившимися аминокислотами возникает пептидная связь, и образовавшееся соединение называют пептидом. Соединение из большого числа аминокислот называют полипептидом. Белок может представлять собой один или несколько полипептидов.

[2]

Для установления структуры белка прежде всего нужно знать, какие из 20 аминокислот входят в его состав. Оказалось, что такие белки, как казеин молока, миозин мышц, альбумин яйца, содержат набор всех 20 аминокислот, в белке-ферменте рибонуклеазе их 19, в инсулине — 18, а в сальмине (белок из молок рыб) — всего 7. В состав большинства белков входит 300-500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот.

Белки различаются составом аминокислот, числом аминокислотных звеньев, и, особенно, порядком чередования их в полипептидной цепи. Расчет показывает, что для белка, построенного из 20 различных аминокислот и содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составлять 10 130 .

Читайте так же:  Йохимбин и л карнитин сочетание

Многие молекулы белков велики и по длине, и по молекулярной массе. Так, молекулярная масса инсулина — 5700, белка-фермента рибонуклеазы — 12700, яичного альбумина — 36000, гемоглобина — 65000. Огромное разнообразие в строении белков обеспечивает им выполнение множества функций. Если учесть, что размер каждой аминокислоты около 0,3 нм, то белок, составленный из многих аминокислотных остатков, должен представлять собой длинную нить. Но, как показало изучение свойств белков в растворах, макромолекула белка имеет форму компактных шаров (глобул) или вытянутых структур — фибрилл. Отсюда следует вывод, что полипептидная нить каким-то образом сплетена и образует клубок или пучок нитей. Исследования показали, что в укладке пептидной нити нет ничего случайного или хаотичного. Она свертывается упорядоченно , для каждого белка определенным образом.

Тестирование по теме «Химический состав клетки» — 10 класс

Видео удалено.
Видео (кликните для воспроизведения).

25-03-2010, 13:35. Разместил: admin

Видео удалено.
Видео (кликните для воспроизведения).

Тестирование по теме «Химический состав клетки» — 10 класс уровень В и С

Выбрать три верных ответа:

В 1. Какие функции выполняет в клетке вода?

Е) придает клетке упругость

В 2. Липиды в клетке выполняют функции:

Д) переносчика наследственной информации

В 3. Какие структурные компоненты входят в состав нуклеотидов молекулы ДНК?

A) азотистые основания: А, Т, Г, Ц

Б) разнообразные аминокислоты

Г) углевод дезоксирибоза

Д) азотная кислота

Е) фосфорная кислота

В 4. Установите соответствие между строением и функцией вещества и его видом.

СТРОЕНИЕ И ФУНКЦИИ

1)состоят из остатков молекул глицерина и жирных кислот

2)состоят из остатков молекул аминокислот

3)защищают организм от переохлаждения

4)защищают организм от чужеродных веществ

5)относятся к полимерам

6)не являются полимерами

В 5. Установите соответствие между признаком нуклеиновой кислоты и ее видом.

ПРИЗНАКИ НУКЛЕИНОВЫХ КИСЛОТ

1)состоит из двух полинуклеотидных цепей, закрученных в спираль

2)состоит из одной полинуклеотидной неспирализованной цепи

3)передает наследственную информацию из ядра к рибосоме

4)является хранителем наследственной информации

5)состоит из нуклеотидов: АТГЦ

6)состоит из нуклеотидов: АУГЦ

В 6. Установите соответствие между признаком строения молекулы белка и ее структурой.

1) последовательность аминокислотных остатков в молекуле

2) молекула имеет форму клубка

3) число аминокислотных остатков в молекуле

4) пространственная конфигурация полипептидной цепи

5) образование гидрофобных связей между радикалами

6) образование пептидных связей

С 1. Какое свойство воды делает ее универсальным растворителем для полярных веществ?

С 2. Найдите ошибки в приведенном тексте, исправьте их, укажите номера предложений, в которых они сделаны, запишите эти предложения без ошибок.

1.Нуклеиновые кислоты — это биологические полимеры.

2.В клетке присутствуют два типа нуклеиновых кислот: ДНК и РНК.

3.Нуклеиновые кислоты состоят из нуклеотидов.

4.В состав ДНК и РНК входят одинаковые нуклеотиды.

5.Все нуклеиновые кислоты в клетке образуют двойные спирали.

С 3. Сколько нуклеотидов содержит ген, кодирующий фермент pибонуклеазу, если он состоит из 16 аминокислот?

С 4. Какая структура молекулы белка определяется последовательностью аминокислот?

С 5. Какова роль белков в организме?

С 6. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, и объясните их.

1.Вода — одно из самых распространенных органических веществ на Земле.

2.В клетках костной ткани около 20% воды, а в клетках мозга 85%.

3.Свойства воды определяются структурой ее молекул.

4.Ионные связи между атомами водорода и кислорода обеспечивают полярность молекулы воды и ее способность растворять неполярные соединения.

5. Между атомами кислорода одной молекулы воды и атомом водорода другой молекулы образуется сильная водородная связь, чем объясняется высокая температура кипения воды.

С 7. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны. Объясните их.

1.Все присутствующие в организме белки — ферменты.

2.Каждый фермент ускоряет течение нескольких химических реакций.

3.Активный центр фермента строго соответствует конфигурации субстрата, с которым он взаимодействует.

4.Активность ферментов не зависит от таких факторов, как температура, рН среды, и других факторов.

С 8. Укажите номера предложений, в которых допущены ошибки. Объясните их.

1.Улеводы представляют собой соединения углерода и водорода.

2.Различают три основных класса углеводов — моносахариды, дисахариды и полисахариды.

3.Наиболее распространенные моносахариды — сахароза и лактоза.

4.Они растворимы в воде и обладают сладким вкусом.

5.При расщеплении 1 г глюкозы выделяется 35,2 кДж энергии.

С 9. За счет каких химических связей поддерживается вторичная структура белка?

С 10. Почему некоторые аминокислоты называются незаменимыми?

С 11. На какие три группы принято делить химические Элементы, входящие в состав живых организмов, по их относительному содержанию?

С 12. В чем состоит отличие ферментов от катализаторов неорганической природы?

С 13. В чем отличия ДНК и РНК?

Тестирование по теме «Химический состав клетки» — 10 класс уровень В и С

Выбрать три верных ответа:

В 1. Какие функции выполняет в клетке вода?

Е) придает клетке упругость

В 2. Липиды в клетке выполняют функции:

Д) переносчика наследственной информации

В 3. Какие структурные компоненты входят в состав нуклеотидов молекулы ДНК?

A) азотистые основания: А, Т, Г, Ц

Читайте так же:  Продукты жиросжигатели самые эффективные

Б) разнообразные аминокислоты

Г) углевод дезоксирибоза

Д) азотная кислота

Е) фосфорная кислота

В 4. Установите соответствие между строением и функцией вещества и его видом.

СТРОЕНИЕ И ФУНКЦИИ

1)состоят из остатков молекул глицерина и жирных кислот

Nav view search

Белки, их строение, аминокислоты

Состав белков. Белки — обязательная составная часть всех клеток. В состав этих биополимеров входят мономеры 20 типов. Такими мономерами являются аминокислоты, которые получили свое название потому, что содержат и аминогруппу (—NH2), и кислотную карбоксильную группу (—СООН). Каждая из 20 аминокислот имеет одинаковую часть, включающую обе эти группы и отличается от любой другой особой химической группировкой, так называемой R-группой, или радикалом

Образование линейных молекул белков происходит в результате соединения аминокислот друг с другом. Карбоксильная группа одной аминокислоты сближается с аминогруппой другой, и при отщеплении молекулы воды между аминокислотными остатками возникает прочная ковалентная связь, называемая пептидной. Соединение, состоящее из большого числа аминокислот, называется полипептидом. Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300—500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3—8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Строение белков. Выделяют первичную, вторичную, третичную и четвертичную структуры белков.

Первичная структура I определяется порядком чередования аминокислот в полипептидной цепи. Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300—500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

В живой клетке многие молекулы белков или их отдельные участки представляют собой не вытянутую нить, а спираль с одинаковыми расстояниями между витками. Такая спираль представляет собой вторичную структуру белковой молекулы II.

Между группами N—Н и С=0, расположенными на соседних витках, возникают водородные связи. Они намного слабее ковалентных, но, повторенные многократно, скрепляют регулярные витки спирали.

Спираль обычно свернута в клубок. Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные R-группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы. В результате взаимодействия различных остатков аминокислот спирализованная молекула белка образует клубок — третичную структуру (рис. 6, III). Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.

Наконец, некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой IV.

Схема строения белковой молекулы
I — первичная структура; II — вторичная структура; III — третичная структура; IV — четвертичная структура

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений pH, а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной (нативной) структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т. е. ренатурироватъ.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости — важнейшего свойства всех живых существ.

Какую роль играют белки в клетке и организме?

Белки, или протеины (от греч. protos — первый, важнейший), входят в состав всех клеток. Их содержание в организме животных составляет более половины сухой массы. Клетки различных типов содержат тысячи разных белков. В чем проявляется такое многообразие белков? Благодаря чему белки выполняют различные функции в организме? Ответы на эти вопросы дают знания об особенностях строения молекул белков.

Молекулы белков состоят из молекул аминокислот

Молекулы белков очень крупные. Они, как и молекулы полисахаридов, состоят из более мелких молекул аминокислот.

Цепь, состоящую из большого числа соединенных друг с другом аминокислотных остатков, называют полипептидной. В состав полипептидной цепи входят десятки и сотни аминокислотных остатков. Следовательно, молекулы белков различаются не только составом аминокислот, их числом и последовательностью, но и длиной полипептидной цепи. Одни белки содержат одну полипептидную цепь, а другие — несколько. Белки, которые состоят только из аминокислот, называют простыми.

Сложные белки могут содержать не только аминокислоты, но и липиды, углеводы, ионы железа, серы, магния и др. Например, в состав белка гемоглобина входят ионы железа, клеточных мембран — гликопротеин — белок, ковалентно связанный с углеводами. Ученые расшифровывают структуру отдельных белков, чтобы научиться создавать их искусственно и использовать в медицине, сельском хозяйстве, пищевой промышленности.

Читайте так же:  Нолипрел аргинин форте инструкция

Число аминокислот, их разнообразие, последовательность соединения в молекулах белков определяют видовую специфичность отдельной особи. В состав клеток организмов разных видов входят различные белки. Это создает большие проблемы при пересадке органов у человека.

Все аминокислоты — бесцветные кристаллические вещества. Они растворимы в воде, многие имеют сладкий вкус. Важное свойство аминокислот — их амфотерность, то есть возможность проявлять как кислотные, так и основные свойства. Эта двойственность вещества связана с тем, что все аминокислоты содержат карбоксильную группу (-СООН) и аминогруппу (-NH2). Карб 1000 оксильная группа придает аминокислоте кислотные свойства, а аминогруппа — основные.

Но аминокислоты имеют и различия. Главное различие состоит в строении боковых цепей — радикалов, которые обозначаются буквой R-.

Остатки аминокислот соединяются между собой в молекулу белка посредством прочной ковалентной пептидной связи. Она возникает между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом отщепляется молекула воды. Последовательное расположение в полипептидной цепи аминокислотных остатков, соединенных пептидными связями, определяет первичную структуру молекулы белка.

Полипептидные цепи белка имеют вид спирали, называемый вторичной структурой белковой молекулы. Она удерживается при помощи водородных связей, которые возникают между NH-группами и СО-группами, расположенными на соседних витках. Множество слабых водородных связей как бы прошивают спираль молекул белка, способствуя образованию прочной структуры.

Спираль благодаря наличию многочисленных и разнообразных связей между радикалами аминокислот (ковалентных, водородных и ионных) принимает более сложную конфигурацию, образуя клубки — третичную структуру белка. Некоторые белки, например гемоглобин, состоят из нескольких клубков, которые имеют различную первичную структуру.

Взаимное расположение в пространстве нескольких одинаковых или разных полипептидных клубков, составляющих одну белковую молекулу, образует четвертичную структуру.

Однако молекулы белков способны в разных условиях менять свою конфигурацию. Под действием нагревания, некоторых химических веществ, облучения и других факторов нарушается естественная структура молекул белков. Это явление называют денатурацией. Денатурацию белка мы можем наблюдать при варке яиц. При этом белок мутнеет, становится непрозрачным и упругим (рис. 6, Б). Денатурация бывает частичной и полной. При частичной денатурации первичная структура белковой молекулы сохраняется. При устранении фактора, вызывающего частичную денатурацию, молекула белка вновь принимает естественную форму.

При полной денатурации первичная структура разрушается и белковая молекула не может вернуться в исходное состояние.

В паутинных железах паука белок жидкий. Паук выделяет капельку секрета, прикрепляет его к опоре, а затем слегка натягивает нить. В результате перестройки четвертичной структуры молекулы белок становится нерастворимым и эластичным. Так за счет денатурации белков образуется паутина.

Биологическая активность белков, их свойства и функции зависят от структуры белковой молекулы, ее конфигурации, способности к обратимой денатурации.

Функции белков в клетке

Главная функция белков — каталитическая. Белки-катализаторы ускоряют химические реакции в клетке. Регуляторную функцию выполняют гормоны. Например, белок инсулин регулирует содержание сахара в крови. При недостатке инсулина у человека развивается болезнь — сахарный диабет.

Белки, как и углеводы, выполняют в клетке структурную функцию. Молекулы белков входят в состав всех клеточных мембран. Молекулы белка коллагена составляют основу хря 1000 щей и сухожилий. Из белка состоят волосы, шерсть, ногти, рога, копыта, чешуя, перья, паутина.

Двигательную функцию выполняют белки актин и миозин, способные вызывать сокращение мышечных волокон, а также белки, входящие в состав ресничек, жгутиков одноклеточных и специализированных клеток, например сперматозоидов многоклеточных организмов.

Специальные белки выполняют защитную функцию. Антитела, образующиеся у позвоночных,- это белки, которые обезвреживают проникающие в организм чужеродные вещества. Белок фибриноген участвует в свертывании крови.
Белки выполняют также транспортную функцию. Например, белок крови гемоглобин, который входит в состав эритроцитов, образует в легких непрочные соединения с кислородом и доставляет его ко всем клеткам организма.

Некоторые белки выполняют запасающую функцию, накапливаясь, например, в семенах растений.

При недостатке полисахаридов и липидов белки могут выполнять энергетическую функцию. При окислении молекул белков в клетке освобождается энергия примерно в таком же количестве, как и при окислении углеводов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источники


  1. Филлипс, Ч. Креатив и образное мышление. 50+50 задач для тренировки / Ч. Филлипс. — М.: Эксмо, 2010. — 192 c.

  2. Домашняя энциклопедия. Питание — здоровье / Г.И. Молчанов и др. — М.: Издательство Ростовского университета, 1993. — 480 c.

  3. Дальке, Рудигер Большая книга постничества. Правильное питание. Проблемы пищеварения (комплект из 3 книг) / Рудигер Дальке , Роберт Хесль. — М.: ИГ «Весь», 2014. — 768 c.
Состоят из остатков молекул аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here