Связи аминокислот в молекуле белка

Сегодня предлагаем ознакомится со статьей на тему: связи аминокислот в молекуле белка с профессиональным описанием и объяснением.

Связи аминокислот в молекуле белка

§ 7. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О БЕЛКАХ

Белки, или протеины (в переводе с греческого означает «первые», или «важнейшие»), присутствуют во всех клетках. На их долю у животных приходится около половины сухой массы, у растений – 20 – 35 %. В белках массовая доля углерода в среднем составляет

1 – 3 %. В их составе также встречаются и другие химические элементы.

Белки – наиболее многочисленные и исключительно многообразные по функциям макромолекулы, играющие фундаментальную роль в формировании и поддержании структуры и функций живых организмов. С белками в живом организме связаны такие биологические процессы, как рост, деление, размножение и развитие клеток, реализация наследственной информации, мышечные сокращения, нервная деятельность, обмен веществ и т.д.

Белки – это высокомолекулярные биополимеры, структурную основу которых составляют полипептидные цепи, состоящие из аминокислотных остатков, связанных друг с другом пептидной связью. При их гидролизе образуются аминокислоты. В составе белков встречаются двадцать стандартных аминокислот. Для каждой стандартной аминокислоты существует генетический код, при помощи которого в генах записана информация о кодируемом белке. Кроме двадцати стандартных аминокислот, в составе белка встречаются и другие аминокислоты, они образуются в результате модификации стандартных аминокислот, после того как последние были включены в состав молекулы белка. Например, в составе белка коллагена содержится 5-гидроксилизин, который образуется в результате модификации стандартной аминокислоты лизина:

Кроме аминокислотных остатков, в состав белков могут входить и другие компоненты: ионы металлов, углеводы, липиды, нуклеиновые кислоты и др. Многообразие белков определяется не только их качественным составом, но и числом аминокислотных остатков, и прежде всего порядком их чередования в молекуле. Потенциально разнообразие белков безгранично.

Между аминокислотными остатками в молекуле белка существуют различные химические взаимодействия, это – ковалентные, ионные, водородные связи, гидрофобные взаимодействия, ван-дер-ваальсовы силы.

Рассмотрим их подробнее.

Ковалентные связи

В молекуле белка аминокислотные остатки соединяются друг с другом пептидной связью. По своей природе пептидная связь является ковалентной. Ее образование происходит за счет аминогруппы одной аминокислоты и карбоксильной группы другой аминокислоты:

В результате взаимодействия двух аминокислот образуется дипептид, состоящий соответственно из двух аминокислотных остатков, расположенных по обе стороны пептидной связи. Аналогичным образом могут соединиться три аминокислоты и при помощи двух пептидных связей образовать трипептид:

Точно так же можно получить тетрапептиды, пентапептиды и т.д. Если таким образом соединить большое число аминокислот, то возникнет структура, называемая полипептидом. Таким образом, молекулы белков представляют собой длинные полипептидные цепи, в которых аминокислотные остатки соединены друг с другом пептидными связями.

В пептидах выделяют особую структуру – пептидную группу. Ее образуют атомы кислорода, углерода, азота и водорода. Все атомы, образующие пептидную группу, находятся в одной плоскости. Пептидная связь в какой-то степени имеет характер двойной связи: вокруг нее нет свободного вращения и она короче других C–N-связей. Кислород и водород относительно пептидной связи находятся преимущественно в транс-положении.

Пептидные связи очень прочные, и для их химического гидролиза требуются жесткие условия, они гидролизуются лишь при длительном нагревании при высоких температурах в кислой среде. В клетке пептидные связи могут разрываться в мягких условиях с помощью ферментов, называемых протеазами, или пептидгидролазами.

Между остатками цистеина в молекуле белка могут образовываться дисульфидные связи (или дисульфидные мостики):

Дисульфидные мостики так же, как и пептидные связи, относятся к ковалентным связям. Дисульфидные мостики могут возникать как внутри полипептидной цепи, так и между различными полипептидными цепями:

Дисульфидные связи имеются не во всех белках.

Интересно знать! В составе волос содержится белок кератин. В его молекуле имеется большое количество дисульфидных связей. С помощью химической завивки волосам можно придать другую форму. Для этого волосы сначала накручивают на бигуди, затем обрабатывают раствором реагента-восстановителя, разрушающего дисульфидные связи, и прогревают. В результате этого кератин приобретает иную пространственную структуру. Далее волосы промывают и обрабатывают реагентом-окислителем, при этом происходит образование новых дисульфидных связей. Вследствие этого вновь приобретенная структура кератина стабилизируется. Волосы приобретают другую форму.

[1]

Ионные связи возникают между радикалами аминокислотных остатков, имеющих противоположные заряды, например, между положительно заряженной аминогруппой (-NH3 + ) остатка лизина и отрицательно заряженной карбоксильной группой (-СОО — ) остатка глутаминовой кислоты:

Гидрофобные взаимодействия

Гидрофобные радикалы аминокислот избегают контактов с водой и поэтому стремятся собраться вместе с помощью так называемых гидрофобных взаимодействий, образуя плотное гидрофобное ядро. Такие взаимодействия возможны, например, между остатками изолейцина и фенилаланина:

Водородные связи

Водородная связь в молекуле белка осуществляется между имеющим частично положительный заряд атомом водорода одной группировки и атомом (кислород, азот), имеющим частично отрицательный заряд и неподеленную электронную пару другой группировки. В белках различают два варианта образования водородных связей: между пептидными группами

и между боковыми радикалами полярных аминокислот. В качестве примера рассмотрим образование водородной связи между радикалами аминокислотных остатков, содержащих гидроксильные группы:

Ван-дер-ваальсовы силы имеют электростатическую природу. Они возникают между разноименными полюсами диполя. В молекуле белка существуют положительно и отрицательно заряженные участки, между которыми возникает электростатическое притяжение.

Рассмотренные выше химические связи принимают участие в формировании структуры белковых молекул. Благодаря пептидным связям образуются полипептидные цепи и, таким образом, формируется первичная структура белка. Пространственная организация белковой молекулы определяется в основном водородными, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Водородные связи, возникающие между пептидными группами, определяют вторичную структуру белка. Формирование третичной и четвертичной структуры осуществляется водородными связями, образующимися между радикалами полярных аминокислот, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Дисульфидные связи принимают участие в стабилизации третичной структуры.

Читайте так же:  Спортпит для суставов и связок рейтинг

ТИПЫ СВЯЗЕЙ МЕЖДУ АМИНОКИСЛОТАМИ В МОЛЕКУЛЕ БЕЛКА

1. КОВАЛЕНТНЫЕ СВЯЗИ — обычные прочные химические связи.

а) пептидная связь

б) дисульфидная связь

2. НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ — физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.

а) Водородная связь

в) Гидрофобное взаимодействие

Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил»

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ. Если карбоксильные и аминогруппы входят в состав радикала, то они никогда(!) не участвуют в формировании пептидной связи в молекуле белка.

Любой белок — это длинная неразветвленная полипептидная цепь, содержащая десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее — стержень молекулы, абсолютно одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится также ДИСУЛЬФИДНАЯ СВЯЗЬ.

Цистеин — аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.

Дисульфидная связь — это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8634 —

| 7425 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Водородные связи

Водородная связь в молекуле белка осуществляется между имеющим частично положительный заряд атомом водорода одной группировки и атомом (кислород, азот), имеющим частично отрицательный заряд и неподеленную электронную пару другой группировки. В белках различают два варианта образования водородных связей: между пептидными группами

и между боковыми радикалами полярных аминокислот. В качестве примера рассмотрим образование водородной связи между радикалами аминокислотных остатков, содержащих гидроксильные группы:

Ван-дер-ваальсовы силы

имеют электростатическую природу. Они возникают между разноименными полюсами диполя. В молекуле белка существуют положительно и отрицательно заряженные участки, между которыми возникает электростатическое притяжение.

Рассмотренные выше химические связи принимают участие в формировании структуры белковых молекул. Благодаря пептидным связям образуются полипептидные цепи и, таким образом, формируется первичная структура белка. Пространственная организация белковой молекулы определяется в основном водородными, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Водородные связи, возникающие между пептидными группами, определяют вторичную структуру белка. Формированиетретичной и четвертичной структуры осуществляется водородными связями, образующимися между радикалами полярных аминокислот, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Дисульфидные связи принимают участие в стабилизации третичной структуры.

Аминокислоты

относительно низкомолекулярные амфотерные соединения, в состав которых кроме углерода, кислорода и водорода входит азот. Амфотерность аминокислот проявляется в способности карбоксильной группы (-СООН) отдавать Н + , функционируя как кислота, а аминной группы – (-NH2) – принимать протон, проявляя свойства оснований, благодаря чему в клетке играют роль буферных систем.

Большинство аминокислот – нейтральные: содержат одну амино- и одну карбоксильную группу. Основные аминокислоты содержат более одной аминогруппы, а кислые – более одной карбоксильной группы.

В живых организмах встречается около 200 аминокислот, но только 20 из них входят в состав белков – это белокобразующие (основные, протеиногенные) аминокислоты (табл. 2), которые в зависимости от свойств радикала делят на три группы:

1) неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);

2) полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);

[2]

3) полярные заряженные (аргинин, гистидин, лизин – положительно заряженные; аспарагиновая и глутаминовая кислоты – отрицательно).

Таблица 2. Двадцать белокобразующих аминокислот

Сокращенное название Аминокислота Сокращенное название Аминокислота
Ала Аланин Лей Лейцин
Арг Аргинин Лиз Лизин
Асн Аспарагин Мет Метионин
Асп Аспарагиновая кислота Про Пролин
Вал Валин Сер Серин
Гис Гистидин Тир Тирозин
Гли Глицин Тре Треонин
Глн Глутамин Три Триптофан
Глу Глутаминовая кислота Фен Фенилаланин
Иле Изолейцин Цис Цистеин
Читайте так же:  Сколько аминокислот образуют белки

Боковые цепи аминокислот (радикалы) бывают гидрофобными или гидрофильными и придают белкам соответствующие свойства. Эти свойства радикалов играют определяющую роль в формировании пространственной структуры (конформации) белка.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты посредством пептидной связи (СО-NH), образуя дипептид. На одном конце молекулы дипептида находится свободная аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды (до 10 аминокислот). Если таким образом соединяются 11 — 50 аминокислот, то образуется полипептид.

Пептиды и олигопептиды играют в организме важную роль:

— олигопептиды: гормоны (окситоцин, вазопрессин), антибиотики (грамицидин S); некоторые очень токсичные ядовитые вещества (аманитин грибов);

— полипептиды: брадикинин (пептид боли); некоторые опиаты («естественные наркотики» человека) выполняющие функцию обезболивания (принятие наркотиков нарушает опиатную систему организма, поэтому наркома испытывает сильную боль – «ломку», которая в норме снимается опиатами); гомоны (инсулин, АКТГ и др.); антибиотики (грамицидин А), токсины (дифтерийный токсин).

Белки образованы значительно большим количеством мономеров – от 51 до нескольких тысяч с относительной молекулярной массой свыше 6000. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом и последовательностью расположения аминокислот в полипептидной цепи. Именно это объясняет огромное разнообразие белков; их количество у всех видов живых организмов составляет 10 10 – 10 12 .

Соединяясь друг с другом пептидной связью, аминокислоты образуют цепочку, которая называется первичной структурой белка. Первичная структура специфична для каждого белка и определяется генетической информацией (последовательностью нуклеотидов ДНК). От первичной структуры зависят окончательная конформация и биологические свойства белка. Поэтому замена даже одной аминокислоты в полипептидной цепочке, или изменение расположения аминокислотных остатков обычно приводит к изменению структуры белка и к снижению, или утрате его биологической активности.

Рис. Структура белковой молекулы: 1 — первичная; 2 — вторичная; 3 — третичная; 4 — четвертичная структуры.

Вторичная структура возникает в результате образования водородных связей внутри одной полипептидной цепи (спиральная конфигурация, альфа-спираль) или между двумя полипептидными цепями (складчатые, бета-слои). Степень спирализации от 11 до 100%. На этом уровне биологически активными являются белки тканей с низким уровнем обменных процессов: кератин – структурный белок волос, шерсти, когтей, перьев и рогов, рогового слоя кожи позвоночных, фибрин крови, гиалин (спиральная структура); фиброин шелка (складчатая структура). Фибриллярные белки могут образовываться в результате скручивания нескольких спиралей вместе (3 у коллагена, 7 у кератина) или связывания боковыми цепями складчатых структур.

Рис. Водородные связи.

Третичная структура глобулярная) – характерна для большинства белков – трехмерное образование шаровидной формы, в которое складываются спиральные и неспиральные участки полипептидной цепи. Связи, стабилизирующие третичную структуру:

1) электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);

2) водородные связи между полярными (гидрофильными) R-группами;

3)гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;

4) дисульфидные связи между радикалами двух молекул цистеина. Эти связи ковалентные. Они повышают стабильность третичной структуры, но не всегда являются обязательными для правильного скручивания молекулы. В ряде белков они могут вообще отсутствовать.

Четвертичная структура – результат объединения за счет гидрофобных взаимодействий, при помощи водородных и ионных связей нескольких полипептидных цепей. Молекула глобулярного белка гемоглобина состоит из четырех (2 альфа — и 2 бета -) отдельных полипептидных субъединиц (протомеров) и небелковой части (простетической группы)гема. Только благодаря такому строению гемоглобин может выполнять свою транспортную функцию.

По химическому составу белки разделяют на простые (протеины) и сложные (протеиды). Простые белки состоят только из аминокислот (альбумины, глобулины, протамины, гистоны, глутелины, проламины). Сложные в своем составе помимо аминокислот (белковая часть) содержат небелковую часть — нуклеиновые кислоты (нуклеопротеиды), углеводы (гликопротеиды), липиды (липопротеиды) металлы (металлопротеиды), фосфор (фосфопротеиды).

Рис. Связи, стабилизирующие третичную структуру

Белки обладают свойством обратимо изменять свою структуру в ответ на действие физических (высокая температура, облучение, высокое давление и т.д.) и химических (спирт, ацетон, кислоты, щелочи и др.) факторов, которое лежит в основе раздражимости, и происходит путем денатурации и ренатурации:

денатурация – процесс нарушения естественной (нативной) структуры белка; может быть обратимым, при условии сохранения первичной структуры.

ренатурация – процесс самопроизвольного восстановления структуры белка при возвращении нормальных условий среды.

Рис. Денатурация и ренатурация белка: 1 — молекула белка третичной структуры; 2 — денатурированный белок; 3 — восстановление третичной структуры в процессе ренатурации.

1) структурная (строительная):

а) входят в состав биологических мембран, образуют цитоскелет клеток;

б)являются составными частями органоидов (например, рибосом, клеточного центра и др.), хромосом (гистоновые белки);

в) образуют цитоскелет (белок тубулин – составная часть микротрубочек);

Видео удалено.
Видео (кликните для воспроизведения).

г) главный компонент опорных структур организма (коллаген кожи, хрящей, сухожилий; эластин кожи; кератин волос, ногтей, когтей, копыт, рогов, перьев);

д) паутинные нити пауков.

2) транспортная: связывают и переносят специфические молекулы, ионы (гемоглобин переносит кислород; альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны); мембранные белки принимают участие в транспорте веществ в клетку и из неё).

3) сократительная (двигательная):

а) в сокращении миофибрилл мышечной ткани участвуют актин и миозин, обеспечивая движение;

б) белок тубулин в составе микротрубочек формирует веретено деления, которое обеспечивает движение хромосом во время митоза и мейоза;

Читайте так же:  Можно ли принимать креатин с аргинином

в) белок тубулин в составе ундулиподийресничек и жгутиков, обеспечивает движение протист и специализированных клеток (сперматозоидов)

4) ферментативная (каталитическая): более 2000 ферментов катализируют все биохимические реакции в клетке(супероксиддисмутаза нейтрализует свободные радикалы, амилаза расщепляет крахмал до глюкозы, цитохромы участвуют в фотосинтезе );

5) регуляторная: некоторые белки являются гормонами, регулирующими обменвеществ в клетке и в организме (инсулин регулирует содержание глюкозы в крови, глюкагон – расщепление гликогена до глюкозы, гистоны – генную активность и др.);

6) рецепторная (сигнальная): в мембранах имеются белки-рецепторы (интегральные), способные взаимодействовать с гормонами и другими биологически активными веществами; они изменять свою конформацию (пространственную структуру) и передают, таким образом, сигналы (информацию) от встречи с такими веществами в клетку; последняя вследствие этого, перестраивает биохимические реакции обмена веществ; некоторые мембранные белки также меняют свою структуру в ответ на действие факторов внешней среды (например, светочувствительный белок фитохром регулирует фотопериодические реакции растений; опсин – составная часть пигмента родопсина в сетчатке глаза);

7) защитная: защищают организм от вторжения других организмов и от повреждений (антитела – иммуноглобулины блокируют чужеродные антигены, фибриноген, тромбопластин и тромбин предохраняют организм от кровопотерь, белок – интерферон защищает от вирусных инфекций);

8) токсическая: белки-токсины образуются в организме многих змей, лягушек, насекомых, кишечнополостных, грибов, растений и бактерий;

9) энергетическая: при полном окислении 1 г белка высвобождается 17,6 кДж энергии; однако белки становятся источником энергии только после исчерпания запасов углеводов и жиров;

10) запасающая: яичный альбумин – запасной строительный и энергетический материал для развития эмбриона птиц; казеин молока также выполняет эти функции при вскармливании детенышей молоком.

[3]

Формы связи аминокислот в белковой молекуле.

Аминокислоты могут объединяться в длинные цепи, образуя между собой пептидные связи. В построении пептидной связи одна из аминокислот участвует своей карбоксильной группой, а другая – аминной группой.

R – CH – CO – NH – CH2

NH2 пептидная СООН

2 аминокислоты образуют дипептид, если + 1аминокислот – трипептид.

Пептиды содержат до 10 аминокислот – олигопептиды

до 50 аминокислот – полипептиды

Пептидная связь довольно прочная, её можно разорвать, например, путем нагревания раствора белка + кислота и щелочь, которые активируют гидролиз этой связи.

Гидролиз пептидной связи в клетках ускоряется при помощи ферментов (при гидролизе белки распадаются на составленные их аминокислоты).

Формы связи аминокислот: 1. пептидная – прочная;

2. водородная – NH – слабая

3. ионная связь – между аминогруппой и карбоксильной группой.

Пептиды

Пептиды– органические молекулы, в состав которых входит несколько остатков аминокислот, связанных пептидной связью.

В зависимости от количества остатков аминокислот и молекулярной массы различают:

1.Низкомолекулярные пептиды, содержащие в своем составе от двух до шести остатков аминокислот. Например, ди-, три-, тетра-, пента-пептиды и т.д.

2.Пептиды со средней молекулярной массой – от 500 до 5000 Д, так называемые «средние молекулы».

3.Высокомолекулярные пептиды с молекулярной массой от 5000 до 16000 Д.

В зависимости от характера действия и происхождения пептиды делят на:

1. Пептиды-гормоны: например, вазопрессин, окситоцин, глюкагон, кальцитонин, рилизинг-факторы и др.

2. Пептиды, участвующие в регуляции пищеварения: гастрин, секретин, панкреатический полипептид (ПП), вазоактивный интестинальный полипептид (ВИП) и др.

3. Пептиды крови: глутатион, ангиотензин, брадикинин, каллидин и др.

4. Нейропептиды: пептиды памяти, пептиды сна, эндорфины, энкефалины и др.

5. Пептиды, участвующие в сокращении мышц: анзерин, карнозин.

6. Пептиды «средние молекулы» — внутренние эндотоксины, образующиеся в организме в результате различных патологических процессов, обусловливающих тяжесть протекания заболевания.

Биологическое значение пептидов:

Пептиды обладают значительной биологической активностью, являются регуляторами ряда процессов жизнедеятельности.

Пептиды в организме присутствуют в небольших количествах.

· группа пептидов, которые содержат глутаминовую кислоту , образуют трипептид глутадион, который участвует в окислительно-восстановительных реакциях и обладает антиоксидантными свойствами;

· пептиды-кинины – регуляторы тонуса сосудов( ангиотензины I и II);

· пептиды – регуляторы функций гипофиза – либерины и статины (посредники между гипоталамусом и эндокринной системой);

· нейтропептиды – секретируются нервными клетками оказывают обезболивающий эффект (энкефалины и эндофины), могут модулировать поведение (скотофобин – пептид, вызывает чувство страха от темноты);

· пептиды – антибиотики (синтезирует микроорганизмы) используются в медицине в качестве регуляторов механизма синтеза белка, регулируют проницаемость мембран;

· пептиды-токсины – из грибов и растений выделено большое количество пептидов, вызывают отравления у человека и животных (пептиды бледной поганки и т.д.).

Исследование строения и функции биологических аминокислот пептидов позволяют понять регуляцию процессов жизнедеятельности организма.

Не нашли, что искали? Воспользуйтесь поиском:

Виды связей аминокислот в белках

Различают прочные, ковалентные связи: пептидные, дисульфидные и непрочные, нековалентные связи в молекуле белка: водородные, ионные, вандерваальсовые, гидрофобные.

Пептидные связи (- СО-NН -) являются основным видом связей в белках. Впервые они были изучены А.Я. Данилевским (1888 г.). Пептидные связи образованы путём взаимодействия ?- карбоксильной группы одной аминокислоты и ? — аминогруппы другой аминокислоты. Пептидная связь является сопряжённой связью, электронная плотность в ней смещена от азота к кислороду, в силу чего она занимает промежуточное положение между одинарной и двойной связью. Длина пептидной связи составляет 0,132 нм. Вращение атомов вокруг пептидной связи затруднено, атомы О и Н в ней находятся в транс-положении. Все атомы пептидной связи располагаются в одной плоскости. Атомы О и Н пептидной связи могут дополнительно образовывать водородные связи с другой пептидной связью. Пептидные связи определяют порядок чередования аминокислот в полипептидной цепи белка, т.е. формируют первичную структуру белка. Пептидные связи — прочные связи (энергия разрыва составляет около 95 ккал/моль). Расщепление пептидных связей осуществляется при кипячении белка в присутствии кислот, щелочей или под действием ферментов пептидаз.

Читайте так же:  Глютамин детям для иммунитета

Дисульфидные связи (-S- S-) образованы двумя молекулами цистеина в составе белковой молекулы. Возможны внутрицепочечные дисульфидные «мостики» в пределах одной полипептидной цепи и межцепочечные связи между отдельными полипептидными цепями. Например, в молекуле гормона инсулина присутствуют оба варианта дисульфидных связей. Дисульфидные связи определяют пространственную укладку белковой молекулы, т.е. третичную структуру белков. Дисульфидные связи разрываются при действии некоторых восстановителей и при денатурации белка.

Водородные связи возникают между атомом водорода и электроотрицательным атомом, чаще кислородом. Водородные связи примерно в 10 раз слабее пептидных связей. Наиболее часто они возникают между атомом Н и атомом О различных пептидных связей: либо близко расположенных в молекуле белка, либо находящихся в разных полипептидных цепях. Огромное количество водородных связей фиксирует в белках в основном вторичную структуру (?-спираль и ? — складчатую структуру) но также участвуют в образовании третичной и четвертичной структур белка. Непрочные водородные связи легко разрываются при денатурации белка.

Ионные связи образуются между противоположно заряженными аминокислотами в составе белковой молекулы (положительно заряженными лизином, аргинином, гистидином и отрицательно заряженными глютаматом и аспартатом). Ионные связи определяют пространственную укладку белков, т.е. формируют третичную и четвертичную структуры белков. Ионные связи разрываются при денатурации.

Ван-дер-ваальсовые взаимодействия — разновидность связей, возникающих при кратковременной поляризации атомов.

Гидрофобные связи возникают между неполярными (гидрофобными) радикалами аминокислот в полярном растворителе (вода). Гидрофобные радикалы погружаются внутрь белковой молекулы, меняя пространственное расположение полипептидной цепи. Гидрофобные взаимодействия имеют энтропийную природу, придают устойчивость молекуле белка, формируют его третичную, а также четвертичную структуру.

ТИПЫ СВЯЗЕЙ МЕЖДУ АМИНОКИСЛОТАМИ В МОЛЕКУЛЕ БЕЛКА

1. КОВАЛЕНТНЫЕ СВЯЗИ — обычные прочные химические связи.

а) пептидная связь

б) дисульфидная связь

2. НЕКОВАЛЕНТНЫЕ (СЛАБЫЕ) ТИПЫ СВЯЗЕЙ — физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.

а) Водородная связь

в) Гидрофобное взаимодействие

Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил»

ПЕПТИДНАЯ СВЯЗЬ формируется ТОЛЬКО ЗА СЧЕТ АЛЬФА-АМИНОГРУППЫ И СОСЕДНЕЙ COOH-ГРУППЫ ОБЩЕГО ДЛЯ ВСЕХ АМИНОКИСЛОТ ФРАГМЕНТА МОЛЕКУЛЫ. Если карбоксильные и аминогруппы входят в состав радикала, то они никогда(!) не участвуют в формировании пептидной связи в молекуле белка.

Любой белок — это длинная неразветвленная полипептидная цепь, содержащая десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее — стержень молекулы, абсолютно одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится также ДИСУЛЬФИДНАЯ СВЯЗЬ.

Цистеин — аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.

Дисульфидная связь — это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

СЛАБЫЕ ТИПЫ СВЯЗЕЙ

В десятки раз слабее ковалентных связей. Это не определенные типы связей, а неспецифическое взаимодействие, которое возникает между разными химическими группировками, имеющими высокое сродство друг к другу (сродство – это способность к взаимодействию). Например: противоположно заряженные радикалы.

Таким образом, слабые типы связей — это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

ВОДОРОДНАЯ СВЯЗЬ — это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно (см. рисунок).

Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они удерживают полипептидные цепочки с высокой прочностью. Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны образовывать такие связи (например, мочевина).

ИОННАЯ СВЯЗЬ — возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ — неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот — вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное взаимодействие ослабевает или разрывается в присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта при проникновении его внутрь организма обусловлены тем, что под его влиянием ослабляются гидрофобные взаимодействия в молекулах белков.

Читайте так же:  Анализ крови на аминокислоты

Типы связей между аминокислотами в молекуле белка

Молекула белка. Типы связей, пространственная организация

Типы связей между аминокислотами в молекуле белка

1. Ковалентные связи — обычные прочные химические связи.

а) пептидная связь

б) дисульфидная связь

2. Нековалентные (слабые) типы связей — физико-химические взаимодействия родственных структур. В десятки раз слабее обычной химической связи. Очень чувствительны к физико-химическим условиям среды. Они неспецифичны, то есть соединяются друг с другом не строго определенные химические группировки, а самые разнообразные химические группы, но отвечающие определенным требованиям.

а) Водородная связь

в) Гидрофобное взаимодействие

Формируется за счет COOH-группы одной аминокислоты и NH2-группы соседней аминокислоты. В названии пептида окончания названий всех аминокислот, кроме последней, находящейся на «С»-конце молекулы меняются на «ил»

Пептидная связь формируется только за счет альфа-аминогруппы и соседней cooh-группы общего для всех аминокислот фрагмента молекулы! Если карбоксильные и аминогруппы входят в состав радикала, то они никогда не участвуют в формировании пептидной связи в молекуле белка.

Любой белок — это длинная неразветвленная полипептидная цепь, содержащая десятки, сотни, а иногда более тысячи аминокислотных остатков. Но какой бы длины ни была полипептидная цепь, всегда в основе ее — стержень молекулы, абсолютно одинаковый у всех белков. Каждая полипептидная цепь имеет N-конец, на котором находится свободная концевая аминогруппа и С-конец, образованный концевой свободной карбоксильной группой. На этом стержне сидят как боковые веточки радикалы аминокислот. Числом, соотношением и чередованием этих радикалов один белок отличается от другого. Сама пептидная связь является частично двойной в силу лактим-лактамной таутомерии. Поэтому вокруг нее невозможно вращение, а сама она по прочности в полтора раза превосходит обычную ковалентную связь. На рисунке видно, что из каждых трех ковалентных связей в стержне молекулы пептида или белка две являются простыми и допускают вращение, поэтому стержень (вся полипептидная цепь) может изгибаться в пространстве.

Хотя пептидная связь довольно прочная, ее сравнительно легко можно разрушить химическим путем – кипячением белка в крепком растворе кислоты или щелочи в течении 1-3 суток.

К ковалентным связям в молекуле белка помимо пептидной, относится также дисульфидная связь.

Цистеин — аминокислота, которая в радикале имеет SH-группу, за счет которой и образуются дисульфидные связи.

Дисульфидная связь — это ковалентная связь. Однако биологически она гораздо менее устойчива, чем пептидная связь. Это объясняется тем, что в организме интенсивно протекают окислительно-восстановительные процессы. Дисульфидная связь может возникать между разными участками одной и той же полипептидной цепи, тогда она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь возникает между двумя полипептидами, то она объединяет их в одну молекулу.

Слабые типы связей

В десятки раз слабее ковалентных связей. Это не определенные типы связей, а неспецифическое взаимодействие, которое возникает между разными химическими группировками, имеющими высокое сродство друг к другу (сродство – это способность к взаимодействию). Например: противоположно заряженные радикалы.

Таким образом, слабые типы связей — это физико-химические взаимодействия. Поэтому они очень чувствительны к изменениям условий среды (температуры, pH среды, ионной силы раствора и так далее).

Водородная связь — это связь, возникающая между двумя электроотрицательными атомами за счет атома водорода, который соединен с одним из электроотрицательных атомов ковалентно (см. рисунок).

Водородная связь примерно в 10 раз слабее, чем ковалентная. Если водородные связи повторяются многократно, то они удерживают полипептидные цепочки с высокой прочностью. Водородные связи очень чувствительны к условиям внешней среды и присутствию в ней веществ, которые сами способны образовывать такие связи (например, мочевина).

Ионная связь — возникает между положительно и отрицательно заряженными группировками (дополнительные карбоксильные и аминогруппы), которые встречаются в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

Видео удалено.
Видео (кликните для воспроизведения).

Гидрофобное взаимодействие — неспецифическое притяжение, возникающее в молекуле белка между радикалами гидрофобных аминокислот — вызывается силами Ван-дер-Ваальса и дополняется выталкивающей силой воды. Гидрофобное взаимодействие ослабевает или разрывается в присутствии различных органических растворителей и некоторых детергентов. Например, некоторые последствия действия этилового спирта при проникновении его внутрь организма обусловлены тем, что под его влиянием ослабляются гидрофобные взаимодействия в молекулах белков.

Источники


  1. Железняк, Ю.Д. Основы научно-методической деятельности в физической культуре и спорте / Ю.Д. Железняк. — М.: Академия (Academia), 2009. — 189 c.

  2. Рассел, Джесси Национальный государственный университет физической культуры, спорта и здоровья имени П. Ф. Лесгафта / Джесси Рассел. — М.: VSD, 2012. — 310 c.

  3. Деймонд Дж. Райнегл Как рисовать спортсменов; Попурри — Москва, 2015. — 741 c.
  4. Гульнора, Усманова Изучение эффективности дезинфектантов в стационарах различного профиля / Усманова Гульнора , Хамдам Рафиев und Заррина Рафиева. — М.: LAP Lambert Academic Publishing, 2018. — 734 c.
Связи аминокислот в молекуле белка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here