Взаимодействие аминокислот друг с другом

Сегодня предлагаем ознакомится со статьей на тему: взаимодействие аминокислот друг с другом с профессиональным описанием и объяснением.

Состав аминокислот

Состав аминокислот

Аминокислоты — это производные углеводородов. В состав аминокислот входят молекулы, у которых есть два вида функциональных групп: карбоксильная группа, имеющая кислотные свойства и аминогруппа, обладающая основными свойствами этого вещества.

Состав аминокислот можно выразить формулой: NH2-R-COOH.

Примерами аминокислот могут быть:

  • Аминоуксусная NH2-СH2-COOH
  • Аминопропионовая NH2-СH2-СH2-COOH
  • Аминокапроновая NH2-(СH2)5-COOH
  • Аминоэнантовая NH2-(СH2)6-COOH
  • Аминобензойная NH26H4-COOH

Глутаминовая кислта. Аминокислоты Глицин. Аминокислоты Ацетилхолин. Аминокислоты Дофамин. Аминокислоты Сератонин. Аминокислоты

В зависимости от расположения этих функциональных групп возникает множество изомеров. Наибольший интерес представляет А-аминокислоты, то есть аминокислоты, в которых карбоксильная группа и аминогруппа находятся рядом. Именно А-аминокислоты входят в состав белков!

Аминокислоты — это твёрдые кристаллические вещества, что объясняется строением их молекул. В состав аминокислот входит внутренняя соль, где соль, надо понимать, как сложное вещество с химической точки зрения!).

Получение аминокислот

Получение аминокислот связано с гидролизом белков, но их можно синтезировать из карбоновых кислот, для чего сначала получают хлорпроизводные кислоты, которые затем обрабатывают аммиаком.

Сератонин. Аминокислоты Сератонин. Аминокислоты Сератонин. Аминокислоты

Химические свойства аминокислот

Химические свойства аминокислот определяются наличием двух противоположных по свойствам функциональных групп (карбоксильная группа и аминогруппа), входящих в состав аминокислот, что придает им амфотерные свойства (свойства и кислоты, и основания одновременно). Так, аминокислоты вступают в химическую реакцию с основаниями и спиртами, при этом образуются химические соединения, аналогичные продуктам реакции карбоновых кислот со щелочами и спиртами — соли и сложные эфиры.

Как основания, аминокислоты легко взаимодействуют с кислотами, при этом образуются соли.

Сератонин. Аминокислоты

Химические свойства аминокислот позволяют им взаимодействовать друг с другом, но такое взаимодействие отличается от привычных реакций. В результате химических реакции могут образовываться соединения с большим числом аминокислотных остатков — полипептиды. Группа атомов — CO — NH, входящих в состав аминокислот, называется пептидной группой, а связь между атомами азота и углерода — пептидная связь или амидная связь. Благодаря этим связям остатки аминокислот соединяются молекулах белков и некоторых волокон (например, в капроне)

Аминокислоты как «кирпичики», из которых построены белки, применяются в медицине: их прописывают больным и сильно и сильно ослабленным после тяжёлых операций и лечения, при заболеваниях желудочного тракта, а также нервных заболеваний. Аминокислоты используют в сельском хозяйстве в качестве добавки к корму животных.

Аминокапроновая кислота и аминоэнантовая кислота, служат исходным сырьём для получения синтетических волокон «капрон» и «энант».

Аминопропионовая кислота — образуется при гидролизе натурального шёлка. А вот её остаток содержится почти во всех белках!

Аминоуксусная кислота — представляет собой белое кристаллические вещество, которое очень хорошо растворимо в воде. Она имеет сладкий вкус, поэтому её второе название гликоль.

[2]

Взаимодействие аминокислот друг с другом

4.3. Свойства аминокислот

[1]

Физические свойства . Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.

Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН):

С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения

Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

Как карбоновые кислоты они образуют функциональные производные:

H 2 N–CH 2 –COOH + NaOH

H 2 N–CH 2 –COO – Na + + H 2 O

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона):

Заметим, что в искусственных условиях (вне организма) 2 различных аминокислоты могут образовать 4 изомерных дипептида (попробуйте представить их формулы).

Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью. Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е. представляют собой продукт поликонденсации α-аминокислот (часть V, раздел 6.3).

Читайте так же:  Глютаминовая кислота и глютамин отличия

—> В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 α-аминокислот (часть V, раздел 6.4.3).

Химические свойства. Аминокислоты, строение, химические свойства.

Аминокислоты, строение, химические свойства.

Биологическая роль аминокислот.

Аминокислотами называются азотсодержащие органические вещества, молекулы которых содержат одновременно аминогруппу (–NH2) и карбоксильную группу (–COOH).

1. H2N – CH2 – COOH аминоуксусная, или аминоэтановая кислота (глицин)

2. H2N – CH2 – CH2 – COOH аминопропионовая, или аминопропановая кислота

3. H2N – (CH2)3 – COOH аминомасляная, или аминобутановая кислота

Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. NH2

α – аминопропионовая β — аминопропионовая

α-аминокислоты содержат аминогруппу у первого атома углерода, считая от карбоксильной группы, β – у второго, γ – у третьего, δ – у четвертого и т.д.

Физические свойства.

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Плавятся с разложением при температурах выше 250º С.

Химические свойства.

В молекулах аминокислот содержатся карбоксильные группы, обладающие кислотными свойствами, и аминогруппы, обладающие основными свойствами, т.е. аминокислоты – это амфотерные органические соединения.

1. Аминокислоты реагируют со щелочами с образованием соли и воды.

H2N – CH2 – COOH + KOH H2N – CH2 – COOK + H2O

Аминоуксусная кислота Аминоуксусно-кислый

2. Аминокислоты реагируют с кислотами с образованием соли.

HOOC – CH2 – NH2 + HCl HOOC – CH2 – NH3 + Cl –

3. Молекулы аминокислот реагируют друг с другом. Продуктом реакции является высокомолекулярное вещество, называемое полипептидом.

H2N – CH2 – COOH + H2N – CH2 – COOH H2N – CH2 – CO – NH – CH2 – COOH + H2O

При соединении n молекул аминокислот получается полипептид с формулой

В полипептиде остатки молекул аминокислот соединены между собой пептидными (амидными) связями ( – CO – NH – ) в пептидные цепи.

· Биологическая роль: α-аминокислоты необходимы для синтеза белков в живых организмах (более 20 α-аминокислот).

· Многие аминокислоты применяют в с/х для подкормки животных.

· В медицине аминокислоты применяют как лекарственные средства.

· Из некоторых аминокислот получают синтетические волокна. Например, из аминокапроновой кислоты получают полиамидное волокно капрон:

| следующая лекция ==>
Туалетное мыло получают из кислот, содержащих 10-16 атомов углерода в молекулах, а хозяйственное – из кислот, содержащих 17-21 атомов углерода. | Изомерия в органической химии очень распространена.

Дата добавления: 2016-05-05 ; просмотров: 3047 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Взаимодействие аминокислот друг с другом

Цель: обобщить и систематизировать знания о строении, свойствах, способах получения и применении аминокислот.

Оборудование и реактивы:

Содержание соответствует части IV.3 электронного учебного пособия. В ходе лекции может быть использован демонстрационный эксперимент, встроенный в УМК «Органическая химия».

Дать определение аминокислотам. Рассмотреть правила номенклатуры аминокислот. При этом отметить, что для простейших и наиболее распространенных аминокислот чаще используются тривиальные названия.

При рассмотрении строения аминокислот необходимо обратить внимание на то, что у всех α-аминокислот (за исключением аминоуксусной) α-углеродный атом имеет 4 различных заместителя, т.е. является асимметрическим. Наличие асимметрического атома углерода определяет возможность существования оптических изомеров:

Аминокислоты, встречающиеся в природе, относятся к L-ряду.

Рассмотреть физические и химические свойства аминокислот. Необходимо отметить, что аминокислоты одновременно содержат карбоксильную группу и аминогруппу, которые соответственно проявляют кислотные и основные свойства. Таким образом, аминокислоты являются амфотерными соединениями, что выражается в их способности взаимодействовать как с кислотами, так и с основаниями.

Показать, что в водном растворе аминокислоты находятся в виде биполярного иона, который образуется в результате отрыва протона от карбоксильной группы и присоединения его к аминогруппе:

Привести уравнения реакций взаимодействия аминокислот с кислотами и основаниями.

Отметить, что подобно другим кислотам аминокислоты способны образовывать сложные эфиры, хлорангидриды, амиды и другие производные. Привести уравнения соответствующих реакций.

Рассмотреть химические свойства, обусловленные аминогруппой. Привести реакции алкилирования и ацилирования, взаимодействия с азотистой кислотой.

Охарактеризовать поведение аминокислот по отношению к нагреванию, показав зависимость от положения аминогруппы по отношению к карбоксильной. Привести уравнения соответствующих реакций.

Отметить, что важнейшим свойством аминокислот является их способность вступать в реакции конденсации друг с другом и образовывать при этом полимерные соединения.

Привести схему реакции конденсации. Дать определение пептидам, пептидной связи.

Рассмотреть реакцию гидролиза пептидов. Отметить, что реакция протекает как в кислой, так и в щелочной среде, а также под действием ферментов. При этом пептиды расщепляются по месту пептидной связи с образованием фрагментов с меньшей молекулярной массой или отдельных аминокислот. Привести схему гидролиза.

Читайте так же:  Л карнитин для набора веса

Охарактеризовать способы получения аминокислот.

Рассмотреть области практического применения основных представителей аминокислот.

Свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями:
Образуются соли:

NH2-CH2-COOH + NaOH

NH2-CH2-COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты

Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами:

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH2-CH2-COOH + CH3OH

NH2-CH2-COOCH3 + H2O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком:

Образуются амиды:

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот:

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Отметьте верные свойства аминокислот

Выберите те ответы, которые считаете верными.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Видео удалено.
Видео (кликните для воспроизведения).

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

Читайте так же:  Чем заменить протеин в домашних

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Взаимодействие аминокислот друг с другом

4.3. Свойства аминокислот

Физические свойства . Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

H 2 N–CH 2 –COOH + HCl ® Cl — [H 3 N–CH 2 –COOH] +

Как карбоновые кислоты они образуют функциональные производные:

H 2 N–CH 2 –COOH + NaOH ® H 2 N–CH 2 –COO — Na + + H 2 O

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп e -аминокапроновой кислоты, в результате которого образуется e -капролактам (полупродукт для получения капрона):

Межмолекулярное взаимодействие трех a -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Химические свойства аминокислот

Химическое поведение аминокислот определяется двумя функциональными группами -NН2 и –СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных – как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Реакции, обусловленные аминогруппой.С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН2–группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой. При участиикарбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при a-углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (-NO2, -СС13, -СООН, -COR и т.д.), поляризующий связь С®СООН, то у карбоновых кислот легко протекают реакции декарбоксилирования. Декарбоксилирование a-аминокислот, содержащих в качестве заместителя + NH3-группу, приводит к образованию биогенных аминов. В живом орга­низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

В лабораторных условиях реакцию осуществляется при на­гревании a-аминокислоты в присутствии поглотителей СО2, например, Ва(ОН)2.

При декарбоксилировании b-фенил-a-аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.

Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходитобразованиединитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Читайте так же:  Протеин для веса в домашних условиях

Окислительно-восстановительные переходы имеют место в системе цистеин – цистин:

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все a-аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

Действие азотистой кислоты на алифатические аминокислоты приводит к образованию гидроксикислот, на ароматические — диазосоединений.

Образование гидроксикислот:

Реакция диазотирования:

Диазосоединение далее может реагировать по двум направлениям:

1. с выделением молекулярного азота N2:

2. без выделения молекулярного азота N2:

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света ( 400-800 нм). Ауксохромная группа

-СООН изменяет и усиливает окраску за счет π, π — сопряжения с π — электронной системой основной группы хромофора.

[3]

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды — дикетопиперазины:

валин (Val) диизопропильное производное

При нагревании b-аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

β-аминовалериановая кислота пентен-2-овая кислота

Нагревание g- и d-аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

(4-амино-3-метилбутановая кислота) кислоты

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9560 —

| 7557 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислоты, их строение и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение

Аминокислоты – это гетерофункциональные органические соединения, в состав молекул которых входит аминогруппа NH2 и карбоксильная группа COOH

аминоуксусная кислота

аминопропановая кислота

Физические свойства.
Аминокислоты – это бесцветные кристаллические растворимые в воде вещества. В зависимости от радикала они могут быть кислыми, горькими и безвкусными.

Химические свойства

Аминокислы – это амфотерные органические соединения (за счёт аминогруппы, они проявляют основные свойства и за счёт карбоксильной группы COOH проявляют кислотные свойства)

Реагируют с кислотами

H2N – CH2 – COOH + NaOH = [H3N – CH2 – COOH- ]Cl — аминоуксусная кислота

Реагируют со щелочами

H2N – CH2 – COOH + NaOH = H2N – CH3 – COONa + H2O — натриевая соль глицина

Реагируют с основными оксидами

Билет №17

Взаимосвязь строения, свойства и применения на примере простых веществ.

Для большинства неметаллов простых веществ характерно молекулярное строение, и лишь некоторые из них имеют немолекулярное строение.

Немолекулярное строение

C, B, Si

У этих неметаллов атомные кристаллические решётки, поэтому они обладают большой твёрдостью и очень высокими температурами плавления.

Добавка бора к стали, к сплавам алюминия, меди, никеля и др. улучшает их механические свойства.

1. Алмаз – для бурения горных пород

2. Графит – для изготовления электродов, замедлителей нейтронов в атомных реакторах, в качестве смазочного материала в технике.

3. Уголь, состоящий в основном из углерода, — адсбент – для получения карбида кальция, чёрной краски.

Молекулярное строение

Для этих неметаллов в твёрдом состоянии характерны молекулярные кристалические решётки, при обычных условиях это газы, жидкости или твёрдые вещества с низкими температурами плавления.

1. Ускорение химических реакций, в том числе в металлургии

2. Резка и сварка металлов

3. В жидком виде в ракетных двигателях

4. В авиации и подводных лодках для дыхания

Белки – как биополимеры. Первичная, вторичная и третичная структура белков. Свойства и биологические свойства белков.

Белки – это биополимеры в состав молекул которых входят остатки аминокислот

Белки имеют первичную, вторичную, третичную, и четвертичную структуру.

Первичная структура – это состоящая из остатков аминокислот соежинённых между собой пектидными связями

Вторичная структура – это цепь, свёрнутая в спираль и кроме пептидных связей есть водородные

Третичная структура – спираль, свёрнутая в клубок и дополнительно имеет сульфидные связи S-S

Четвертичная структура – двойная спираль, свёрнутая в клубок

Белки – амфотерные электролиты. При определенном значении pH среды число положительных и отрицательных зарядов в молекуле белка одинаково. Белки имею разнообразное строение. Есть белки нерастворимые в воде, есть белки легко растворимые в воде. Есть белки малоактивные в химическом отношении, устойчивые к действию агентов. Есть белки крайне неустойчивые. Есть белки, имеющие вид нитей, достигающих в длину сотен нанометров; есть белки, имеющие форму шариков диаметром всего 5–7 нм. Они имеют большую молекулярную массу (104—107).

Читайте так же:  Л карнитин повер систем

Химмические свойства
1. Реакция денатурации – это разрушение первичной структуры белка под действием температуры.
2. Цветные реакции на белки
а) Взаимодействие белка с Cu(OH)2
2NaOH + CuSO4 = Na2SO4 + Cu(OH)2
б) Взаимодействие белка с HNO3
Реактивом на серу является ацетат свинца (CH3COO)2Pb, образуется черный осадок PbS

Биологическая роль
Белки – строительные материалы
Белки являются обязательными компонентом всех клеточных структур
Белки ферменты, играют роль катализаторов
Регулярные белки: к ним относят гармоны
Белки – средство защиты
Белки как источник энергии

Взаимодействие аминокислот друг с другом – образование пептидов

Кат, t o

Пептидная группа (амидная связь)

Две аминокислоты образуют дипептид:

Кат, t o
Аланин
Глицин

Любой дипептид имеет свободные амино- и карбоксильную группы и поэтому может взаимодействовать еще с одной молекулой аминокислоты, образуя трипептид; таким же путем получаются тетрапептиды и т.д.:

Глицилаланилфенилаланин
Глицилаланин
Фенилаланин
Кат, t o

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10217 —

| 7236 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Химические свойства аминокислот: взаимодействие со щелочами, кислотами и друг с другом (реакция поликонденсации).

1) Образование солей это амфотерные соединения, поэтому они способны образовывать соли как с кислотами, так и с основаниями.-. Аминокислоты

-Аминокислоты способны также образовывать устойчивые комплексные соли с ионами некоторых двухвалентных металлов: Cua 2+ , Ni 2+ , Zn 2+ , Co 2+ . С ионами Cu 2+ получаются кристаллические хелатные соли синего цвета, которые используются для выявления, выделения и очистки аминокислот (качественная реакция).

2) Реакции по карбоксильной группе

3) Реакции по аминогруппе

4) Реакции аминокислот под действием ферментов

5. Аминокислоты взаимодействуют друг с другом

-СО–NH – пептидная группа (амидная группа)

Пептидная связь и полипептиды.

α-Аминокислоты могут ковалентно связы­ваться друг с другом с помощью пептидных свя­зей.Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH-R связь, называемая пептидной связью. При этом происходит отщепление мо­лекулы воды .

При помощи пептидных связей из аминокислот образуются белки и пептиды. Пептиды, содержащие до 10 аминокислот, называют олигопептиды.Час­то в названии таких молекул указывают количе­ство входящих в состав олигопептида аминокис­лот: трипептид, пентапептид, октапептид и т.д. Пептиды, содержащие более 10 аминокислот, называют «полипептиды»,а полипептиды, состоя­щие из более чем 50 аминокислотных остатков, обычно называют белками. Мономеры аминокислот, входящих в состав бел­ков, называют «аминокислотные остатки».Амино­кислотный остаток, имеющий свободную амино­группу, называется N-концевым и пишется слева, а имеющий свободную C-карбоксильную груп­пу — С-концевым и пишется справа. Пептиды пи­шутся и читаются с N-конца.

Связь между α-углеродным атомом и α-аминогруппой или α-карбоксильной группой спо­собна к свободным вращениям (хотя ограниче­на размером и характером радикалов), что позволяет полипептидной цепи принимать раз­личные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. α-углеродные атомы располагаются по разные стороны от пептид­ной связи. В результате боковые радикалы ами­нокислот находятся на наиболее удалённом рас­стоянии друг от друга в пространстве. Пептидные связи очень прочны и являются ковалентными.

Видео удалено.
Видео (кликните для воспроизведения).

В организме человека вырабатывается мно­жество пептидов, участвующих в регуляции раз­личных биологических процессов и обладающих высокой физиологической активностью. Такими являются целый ряд гормонов – окситоцин (9 аминокислотных остатков), вазопрессин (9), брадикинин (9) регулирующий тонус сосудов, тиреолиберин (3), антибиотики – грамицидин, пептиды, обладающие обезболивающим дей­ствием (энкефалины(5) и эндорфины и другие опиоидные пептиды). Обезболивающий эф­фект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

Источники


  1. Диетология. Руководство / Коллектив авторов. — М.: Питер, 2017. — 712 c.

  2. Дальке, Рудигер Болезнь как язык души. Проблемы пищеварения. Проблемы сердца и органов кровообращения (комплект из 3 книг) / Рудигер Дальке , Роберт Хесль. — М.: ИГ «Весь», 2013. — 800 c.

  3. Организация работы предприятий общественного питания. — М.: Экономика, 2013. — 271 c.
Взаимодействие аминокислот друг с другом
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here