Значение аминокислот и белков

Сегодня предлагаем ознакомится со статьей на тему: значение аминокислот и белков с профессиональным описанием и объяснением.

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Биологическое значение аминокислот

1. Входят в состав пептидов и белков биологических объектов.

2. Являются предшественниками многих низкомолекулярных биологически активных веществ – гамма – аминомаслянной кислоты (ГАМК, биогенные амины).

[2]

Некоторые гормоны являются производными аминокислот.

3. Являются предшественниками азотистых оснований, входящих в состав нуклеиновых кислот, и в состав сложных липидов (холина, этаноамина).

4.Участвуют в биосинтезе медиаторов нервной системы (ацетилхолина, дофамина, серотонина и др).

4 Цветные реакции на белки

Присутствие белка в биологических объектах или растворах можно обнаружить с помощью цветных реакций, которые обусловлены наличием аминокислот в белке, их специфическими группами или пептидными группами.

Существуют универсальные цветные реакции, которые дают все белки (биуретовая и нингидриновая). Кроме того, имеются специфические реакции, которые обусловлены наличием определенных аминокислот в молекуле белка. На основании некоторых цветных реакций разработаны методы количественного определения белков и аминокислот, которые широко используются в биохимических анализах.

В данной работе студент должен не только провести универсальные и специфические реакции на белки, но и сделать вывод о питательной ценности исследованных белков, которая определяется содержанием незаменимых аминокислот.

Незаменимых (обязательных) аминокислот для человека восемь: валин (Вал), лейцин (Лей), изолейцин (Иле), треонин (Тре) , метионин (Мет), лизин (Лиз) , фенилаланин (Фен),триптофан (Трп). Две аминокислоты являются частично незаменимыми – это аргинин и гистидин. Они не синтезируются в организме детей. Эти аминокислоты, как и все другие, синтезируют микроорганизмы и зеленые растения, но не могут синтезироваться в организме животного и человека, т.к. нет аналогов соответствующих кетокислот, необходимых для их биосинтеза. Незаменимые аминокислоты должны быть обязательно введены в организм человека или животного с пищей. Если их будет в пище недостаточно, то нормальное развитие и жизнедеятельность организма нарушаются, т.к. не могут синтезироваться белки, содержащие их.

Отдельные пищевые белки могут быть биологически неполноценными по своему аминокислотному составу. Однако необходимо исследовать аминокислотный состав не отдельных белков, а всего их комплекса, содержащегося в пищевом продукте. Только при таком подходе могут быть получены правильные данные об аминокислотном составе, а следовательно, и о пищевой ценности продукта. Для питания большое значение имеет сбалансированность аминокислотного состава белков.

По содержанию в белке незаменимых аминокислот, определяемых химическими методами, вычисляют аминокислотный скор, которым характеризуют биологическую ценность белка. В продукте определяют содержание каждой незаменимой аминокислоты. Найденное количество вычисляют в процентах к содержанию той же аминокислоты в идеальном белке (куриного яйца, молока). Чаще всего, в качестве идеального белка применяют аминокислотную шкалу Комитета ФАО/ВОЗ (ФАО Продовольственная и сельскохозяйственная организация ООН – межправительственная организация, специализированное учреждение ООН. ВОЗ- Всемирная организация здравохранения).

Аминокислотный скор каждой незаменимой аминокислоты в идеальном белке (шкале ФАО/ВОЗ) принимают за 100%.

Расчет аминокислотного скора ведут по формуле:

АK = ¾¾¾¾ × 100, (2)

где АK – аминокислота;

В — содержание (мг) незаменимой аминокислоты в 1 г исследуемого белка;

С – содержание (мг) этой же незаменимой кислоты в 1 г идеального белка (шкале ФАО/ВОЗ).

По вычисленному скору определяют лимитирующую биологическую ценность изучаемого белка. Аминокислота с наименьшим скором является дефицитной в данном белке. Для растительного белка чаще всего дефицитным является лизин, триптофан, метионин и треонин. Белки животного происхождения мяса, молока, яиц биологически более ценные, т.к. их аминокислотный состав ближе к аминокислотному составу органов и тканей.

Дата добавления: 2015-09-13 ; просмотров: 18 ; Нарушение авторских прав

Значение белков и аминокислот в питании. Строение и химическая природа белков

Методические указания к проведению лекционного занятия

Раздел 2.

Читайте также:
  1. IV. Значение библиографии. Виды и типы библиографических пособий.
  2. Администрация морского порта, ее значение и функции.
  3. Аминокислоты, пептиды и белки
  4. Антиблокировочные системы, назначение, типы и основные элементы
  5. БИОЛОГИЧЕСКОЕ
  6. Биологическое действие солнечной радиации
  7. Ввиду факта, что церемониальным людоедством занимались, физическое состояние Молодого Тамлэйн имеет зловещее значение.
  8. Взаимопревращения аминокислот
  9. Виды ремонта и назначение ремонтных работ.

Функционально-технологические свойства основных веществ пищевых продуктов и их изменение под влиянием кулинарной обработки

Читайте так же:  Витамины для женщин для головы

Тема № 2Функциональные свойства белков и их биологическая

Ценность. Процессы гидратации и дегидратации.

План:

1. Значение белков и аминокислот в питании. Строение и химическая природа белков.

2. Функциональные свойства белков.

3. Понятие биологической ценности белков, аминокислотный скор.

4. Физико-химические изменения белков, протекающие при технологических процессах производства кулинарной продукции: гидратация, дегидратация.

«Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»

Значение белков и аминокислот в питании. Строение и химическая природа белков

Белок – главный пластический материал, необходимый не только для возмещения белковых трат в процессе жизнедеятельности, но и для формирования новых клеток, то есть для роста и развития. Попадая в организм, белки расщепляются под воздействием ферментов до аминокислот, часть из которых распадается на органические кетокислоты; из них вновь синтезируются необходимые организму аминокислоты, белки и вещества белковой природы. Белки – составная часть ферментов, гормонов и др. жизненноважных систем. Недостаточное поступление с пищей белков нарушает динамическое равновесие метаболических белковых процессов, сдвигая их в сторону преобладания распада собственных белков тела, что приводит в конечном итоге к истощению организма. Белковая недостаточность представляет особую опасность для растущего организма, в частности уменьшение белка в рационе до 3% рекомендуемых норм вызывает полную остановку роста, снижение массы тела, изменение химического состава костей.

Биологические функции белков: структурная (кератин волос, ногтей, коллаген соединительной ткани), каталитическая (ферменты), транспортная (гемоглобин, миоглобин), защитная (антитела, фибриноген крови), сократительная (актин, миозин мышечной ткани), гормональная (инсулин, гормон роста, гастрин желудка) и резервная (казеин молока, овоальбумин яйца).

Белки

(протеины, от греч. рrotos –первый, важный) – природные полимеры, в которых аминокислоты связаны пептидной связью (-СО-NH-). Термин «протеины» впервые был введен в 1838 г Берцелиусом и достаточно точно отражает главенствующее биологическое значение данного класса соединений.

Аминокислоты

– полифункциональные соединения, содержащие, по меньшей мере, две разные химические группировки (-СООН и –NН2), способные реагировать друг с другом с образованием ковалентной (пептидной связи) (-СО-NH-). Аминокислоты являются амфотерными: обладают свойствами кислоты и щелочи.

По форме молекулы белки делятся на: глобулярные (сферопротеины), цепочки аминокислот в которых свернуты в глобулы и фибриллярные (склеропротеины) – волокнистые белки. По строению белки делятся на:

– протеины – простые белки, состоящие только из остатков аминокислот (альбумины, растворимые в воде, глобулины, растворимые в солевых растворах, проламины, растворимые в спирте и глютелины, растворимые в щелочах).

– протеиды – сложные белки, состоящие из белковой и небелковой частей (глюкопротеиды – белок+углеводы, фосфопротеиды – белок +фосфорная кислота – казеин молока и др.)

По пространственному строению различают:

1. Первичная структура белка – последовательное соединение остатков аминокислот в цепочку за счет пептидной связи;

2. Вторичная структура – закручивание цепочек аминокислот в спирали. Скручивание происходит за счет образования водородных связей.

3. Третичная – свертывание спиралей в глобулы. В образовании данной структуры имеют значение полярные и неполярные группы. Общим признаком пространственного расположения остатков аминокислот является локализация гидрофобных групп внутри молекулы, а гидрофильных – на ее поверхности.

4. Четвертичная – объединение нескольких глобул в более крупную частицу. Она представляет собой комбинацию субъединиц с одинаковой или разной первичной, вторичной и третичной структурой. Субъединицы соединены между собой с помощью слабых ковалентных связей.

Дата добавления: 2017-03-12 ; просмотров: 668 | Нарушение авторских прав

Читайте так же:  За что отвечает креатин в крови

Роль белков и аминокислот в организме

Гемопротеиды, сложные белки, содержащие окрашенную простетическую группу — гем. Относятся кхромопротеидам. Кроме дыхательных пигментов — гемоглобина и миоглобина, Г. включают широко распространённые дыхательные ферменты — цитохромы, и окислительные ферменты тканей — пероксидазу, катализирующую окисление органических веществ перекисью водорода, катализу и леггемоглобин (легоглобин) — пигмент, обнаруженный в корневых клубеньках бобовых растений.

Рибонуклеи́новые кисло́ты (РНК) — одна из трех основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живыхорганизмов

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтезбелка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнаваниякодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так малые ядерные РНК принимают участие в сплайсингеэукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы) у отдельных РНК обнаружена собственнаяферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Дата добавления: 2017-01-28 ; просмотров: 387 | Нарушение авторских прав

Значение белков и аминокислот в питании

Читайте также:

  1. C.3.2.3.2 Назначение
  2. C.5.4.2.1 Назначение
  3. C.7.4.2.1 Назначение
  4. C.7.5.2.2 Назначение
  5. D.1.3.1.3 Назначение
  6. D.2.3.1.3 Назначение
  7. E.1.2.2.1 Назначение
  8. E.2.2.2.1 Назначение
  9. F.13.4.2.1 Назначение
  10. F.2.2.2.1 Назначение
  11. F.5.3.2.1 Назначение
  12. F.6.2.2.1 Назначение

План

Видео (кликните для воспроизведения).

Ценность. Процессы гидратации и дегидратации.

Тема Функциональные свойства белков и их биологическая

Лекция №2

Технологические принципы производства кулинарной продукции

Основными принципами производства кулинарной продукции являются:

1. Принцип безопасности – производство продукции безопасной по микробиологическим и физико-химическим показателям.

2. Принцип взаимозаменяемости – замена одних продуктов другими в соответствии с нормами при условии, что качество блюда или изделия при этом не ухудшается.

3. Принцип совместимости – использование таких сочетаний продуктов, которые бы сочетались по вкусу, цвету и др. Этот принцип связан с принципом безопасности и взаимозаменяемости. Обусловлен индивидуальными особенностями, привычками и национальными вкусами.

4. Принцип сбалансированности– приготовление, разработка рецептур блюд, сбалансированных по содержанию основных пищевых веществ – белков, жиров, углеводов. Не существует продуктов, отвечающих формуле сбалансированного питания, поэтому задача технолога – оптимизация рецептур блюд, подбор соусов и гарниров, сочетающихся как по вкусовым характеристикам, так и по содержанию пищевых веществ (например: сочетание мяса и рыбы с овощными гарнирами, овощных блюд – со сметанными соусами и др.).

5. Принцип рационального использования сырья и отходов – наилучшее использование потребительских свойств сырья, внедрение малоотходной технологии (использование крупяных, овощных отваров для приготовления соусов и др.).

6. Принцип снижения потерь питательных веществ и массы готовой продукции – соблюдение режимов тепловой обработки (температуры, продолжительности нагрева), позволяющих наиболее полно сохранить витаминный и минеральный состав продуктов.

7. Принцип сокращения времени кулинарной обработки– использование вспомогательных способов (замачивания, рыхления, измельчения, увеличение поверхности контакта продукта с греющей средой и др.), но не в ущерб качеству и безопасности продуктов.

8. Принцип наилучшего использования оборудования и электроэнергии– использование современного оборудования, экономия электроэнергии путем своевременного отключения незагруженного оборудования.

«Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»

1. Значение белков и аминокислот в питании. Строение и химическая природа белков.

2. Функциональные свойства белков.

3. Понятие биологической ценности белков, аминокислотный скор.

4. Физико-химические изменения белков, протекающие при технологических процессах производства кулинарной продукции: гидратация, дегидратация.

Дата добавления: 2014-01-11 ; Просмотров: 440 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

ВОПРОС 4. Значение незаменимых аминокислот.

Жизнедеятельность человека определяется ежедневным потреблением с пищей сбалансированной смеси, содержащей 8 незаменимых аминокислот и две частично заменимые. Незаменимые – ароматические (фенилаланин и триптофан), алифатические (лейцин, Валин, изолейцин, лизин), содержащие серу (метионин) и гидроксильную группу (треонин). Так как из метионина и фенилаланина в организме синтезируется цистеин и тирозин, соответственно, то наличие в пище в достаточном количестве этих двух заменимых аминокислот сокращает потребность в незаменимых предшественниках. К частично заменимым аминокислотам относят аргинин и гистидин, т.к. они хоть и очень медленно, но синтезируются в организме. Недостаточное потребление аргинина и гистидина с пищей у взрослого не сказывается на развитии, однако может возникнуть экзема или нарушиться синтез гемоглобина.

Читайте так же:  Лучшие жиросжигатели для мужчин 2019

Отсутствие в пище хотя бы одной незаменимой кислоты приводит к отрицательному азотистому балансу, нарушению деятельности ЦНС, остановку роста, авитаминоз. Нехватка одной приводит к н7еполному усвоению других. Данная закономерность подчиняется закону Либиха, по которому развитие живых организмов определяется тем незаменимым веществом, которое присутствует в наименьшем количестве. Зависимость функционирования организма от количества незаменимых аминокислот используется при определении биологической ценности белков химическими методами. Широко используется метод Митчелла Х. и Р. Блока – метод аминокислотного скора. Скор выражают в % или безмерной величиной – отношение содержания незаменимой а.к. белка к ее количеству в эталонном белке.

Аминокислотный скор= мг а.к. в 1 г белка Х 100%

Мг а.к. в 1 г эталона

Аминокислотный состав эталонного белка сбалансирован и идеально соответствует потребностям организма. Данные опубликованы в 1973 г. ФАО и ВОЗ и уточнены в 1985. А.к., скор которой имеет самое низкое значение, называется первой лимитирующей аминокислотой. Значение скора этой аминокислоты определяет биологическую ценность и степень усваения.

Другой метод определения биологической ценности белков заключается в определении индекса незаменимых аминокислот (ИНАК). Это модификация химического метода скора, позволяет учитывать количество всех незаменимых аминокислот, рассчитывают по формуле:?

ИНАК= п √Лизб/Лизэ х Триб/Триэ х….х Гисб/Гисэ, п- число аминокислот, индексы б,э – содержание аминокислоты в изучаемом и эталонном белке, соответственно.

Помимо химических методов применяют и биологические с использованием микроорганизмов и животных. Основной показатель оценки прирост и привес за определенный период времени, расход белка и энергии на единицу привеса, коэффициенты перевариваемости и отложения азота в теле, доступность аминокислот. Показатель, определяемый отношением привеса животных (г) к количеству потребляемого белка (г), разработан П. Осборном и носит название коэффициента эффективности белка (КЭБ, 1919 г). Для сравнения показателя используют контрольную группу животных со стандартным белком – казеином, в количестве, обеспечивающем в рационе 10% белка. В опытах на крысах.

Животные и растительные белки заметно отличаются по биологической ценности. Животные белки – полноценные, растительные нет, т.к. низкое содержание в них лизина, триптофана, треонина и др. На основании анализа составляют рацион, диеты.

Наряду с аминокислотным анализом биологическая ценность определяется степенью усваения после переваривания. Степень зависит от структурных особенностей, активности ферментов, глубины гидролиза в желудочно-кишечном тракте и вида предварительной обработки белка при приготовлении пищи. Белки кожи не перевариваются, разваривание, протирание и измельчение ускоряет переваривание белка, нагревание при температурах выше 100С растительного белка затрудняет переваривание. Животные белки имеют более высокую усвояемость 90%, растительные 60-80%. В порядке убывания усвоения: рыба-молочные-мясо-хлеб-крупы. Причина плохого усвоения растительно белка – взаимодействие с целлюлозой, которая затрудняет доступ ферментов к полипептидам. Пнри недостатке в пище углеводов и жиров требования к белку возрастают, т.к. надо выполнять и энергетическую функцию. Если их много может идти синтез липидов и ожирение.

Не нашли то, что искали? Воспользуйтесь поиском:

[1]

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9117 —

| 7229 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислоты

Человеческое тело состоит из клеток, которые в свою очередь состоят из белка и протеина, именно поэтому человек так нуждается в питании, содержащем белки, чтобы восстанавливать потраченные запасы. Но белок бывает разный, есть такие белки, которые не несут ценности для организма, а ценность белка определяется только количеством важных аминокислот. Аминокислоты получаются из пищевого белка, только он способен синтезироваться в организме человека.

Аминокислоты представляют собой структурные химические единицы, образующиеся из белков. В природе известно 150 видов аминокислот, но человеку нужно всего 20 из них, в свою очередь наш организм научился самостоятельно вырабатывать 12 аминокислот при условии, что в организме хватает необходимых веществ. Но оставшиеся 8 аминокислот воспроизвести невозможно, они могут лишь поступать в организм извне, такие кислоты называются незаменимыми и поступают вместе с пищей.

Для чего нужны аминокислоты

Аминокислоты нужны для синтеза белка, из них строится белок для всего организма, из полученного белка строится вся наша плоть, сюда входят связки, железы, сухожилия и мышцы, волосы и ногти, каждый орган организма. Важно понимать, что получаемые белки не все однообразны, а каждый сформированный уже имеет свое назначение для определенной цели.

Еще одна важная функция аминокислот — незаменимость их в работе головного мозга, по сути аминокислоты выполняют роль нейромедиаторов, как бы пропуская нервные импульсы через себя от клетки к клетке. Также стоит знать, что витамины и полезные вещества могут нормально функционировать только тогда, когда в организме достаточно аминокислот всех видов. Из общего числа аминокислот есть те, которые отвечают за мышцы, строя их и снабжая необходимой энергией. Из всех 20 аминокислот стоит выделить особенно важные: метионин, триптофан и лизин, чтобы они правильно функционировали в организме, нужно чтобы они сочетались в следующей пропорции: 5:5, 1:3, 5.

Читайте так же:  Аминокислоты используются в синтезе

Роль аминокислот в организме

  • Аланин — эта аминокислота является энергетическим источником для нервной системы и головного мозга. Также она отвечает за укрепление иммунной системы, т.к. способна вырабатывать антитела. Аланин задействован в метаболизме органических кислот и сахаров.
  • Аргинин — аминокислота, отвечающая за обмен веществ в мышцах, незаменима для восстановления хрящевой ткани, восстанавливает и поддерживает кожу, укрепляет сердечную мышцу и связки, играет важную роль в иммунной системе, приостанавливает развитие опухоли.
  • Аспарагин — полностью отвечает за работу и регулировку процессов в ЦНС.
  • Валин — аминокислота, отвечающая за поддержание обмена азота в организме.
  • Гамма-аминомасляная кислота — незаменима в случаях заболевания артериальной гипертензией и эпилепсией.
  • Гистидин — это вещество ставит защиту от радиации, является строителем белых и красных кровяных телец, играет важную роль в иммунитете. Кстати, гистамин получается из гистидина.
  • Глутамин — аминокислота, важная для правильного кислотно-щелочного баланса, кроме этого она очень эффективно помогает понизить тягу к курению и алкоголю.
  • Глутаминовая кислота — необходима в случае язв или дистрофии мышц.
  • Глицин — отвечает за скорейшее восстановление поврежденных тканей.
  • Изолейцин — необходим для правильной регулировки уровня сахара в крови.
  • Лейцин — ускоряет восстановлению или лечению мышечной ткани, костей и кожи.
  • Лизин — необходим для правильного усвоения кальция, правильно распределяет его для роста и питания костей. Также он необходим для укрепления сердечного тонуса, усиливает резистентность организма, понижает уровень вредного холестерина в крови.
  • Метионин — нужен для лечения аллергии химического происхождения, а также при остеопорозе.
  • Пролин — отвечает за укрепление сердечной мышцы.
  • Серин — балансирует обмен жирных кислот и жиров в организме.
  • Таурин — просто необходим при гипогликемии, при заболевании атеросклерозом, отвечает за метаболизм желчной кислоты.
  • Треонин — необходим для поддержания иммунитета, регулирует обмен белков и жиров, предотвращает отложение в печени жиров.
  • Тирозин — очень полезен, если у человека хроническая усталость, данная аминокислота стоит перед гормонами щитовидки, также она отвечает за образование адреналина и норадреналина.
  • Триптофан — полезен сердечникам, а также при хронической бессоннице. Вообще триптофан синтезирует в организме огромное количество витамина РР, стоит непосредственно перед нейромедиатором серотонином. Именно серотонин отвечает за эмоциональное состояние человека, при недостатке человек впадает в депрессию.
  • Цистеин — необходим для лечения ревматоидного артрита, используется при лечении рака и болезнях артерий.
  • Фенилаланин — эта аминокислота способствует циркуляции крови, используется при лечении мигрени, улучшает внимание и память, участвует в образовании инсулина, с ее помощью лечат депрессии.

Продукты содержащие аминокислоты

Из 20 аминокислот, 8 необходимо доставлять в организм с пищей: изолейцин, треонин, валин, фенилаланин, лизин, триптофан, лейцин, метионин — это незаменимые кислоты. Есть продукты, в которых содержатся три основных аминокислоты, метионина, триптофана и лизина, причем они практически в идеальной пропорции.

Вот список этих продуктов:

  • мясо 1:2,5:8,5;
  • яйцо куриное 1,6:3,3:6,9;
  • зерно пшеницы 1,2:1,2:2,5;
  • соя 1,0:1,6:6,3;
  • рыба 0,9:2,8:10,1;
  • молоко 1,5:2,1:7,4.

А вообще незаменимые кислоты содержатся во многих продуктах:

  • валин в грибах, молоке, зерновых, арахисе и сое;
  • изолейцин, в достатке в курице, орехах миндаля и кешью, печенке, чечевице, ржи, мясе и во многих семенах;
  • лейцин содержится в буром рисе, рыбе и мясе, чечевице и орехах;
  • лизин в мясе, молоке, пшенице, рыбе и орехах;
  • метионин содержится в мясе, молоке, бобовых, яйцах;
  • треонин в молоке и яйцах;
  • триптофан в бананах, финиках, арахисе, мясе и овсе;
  • фенилаланин есть в сое, курице, молоке, говядине и твороге.

Фенилаланин входит в состав аспартама, это сахарозаменитель, но очень непонятного качества.
Аминокислоты можно получить из БАДов, особенно это рекомендуется тем, кто на диете или же вегетарианцам.

НИЖЕ ПРЕДСТАВЛЕНЫ ЛУЧШИЕ СПЕЦИАЛИСТЫ ВАШЕГО РЕГИОНЫ

Если вы по какой-то причине не употребляете животный белок, то:

[3]

  • для пополнения организма принимайте БАД, где есть аминокислоты;
  • кушайте орехи, семечки, бобовые;
  • обязательно совмещайте продукты с белком, к примеру, соевое мясо, фасоль, рис, нут и т.д., таким образом сочетая их между собой вы получите все необходимые аминокислоты из ряда незаменимых.

Стоит провести уточнение, что пищевые белки бывают ненативные и нативные.

  • Ненативные белки считаются неполноценными, в них мало незаменимых аминокислот, однако они очень полезные и богаты веществами и витаминами. Содержатся они в крупе, орехах, бобовых и овощах.
  • Нативные белки — это полноценные белки, в которых очень много аминокислот незаменимого ряда. Их модно найти в морепродуктах, мясе, птице, яйцах, в общем, во всем, что содержит животный белок.

Печень производит такие аминокислоты: гамма-аминомасляная кислота, аланин, пролин, аргинин, таурин, аспарагиновая кислота, цитруллин, орнитин, глютамовая кислота, аспарагин, тирозин, цистеин и прочие.

Если в организме нехватает аминокислот

Известно, что 12 аминокислот вырабатывает организм в печени, однако их недостаточно для полноценной жизни организма, их необходимо поставлять в организм обязательно.

Причинами нехватки важных аминокислот приводят:

  • частые инфекционные заболевания;
  • стрессы;
  • старение;
  • употребление некоторых медпрепаратов;
  • нарушения в ЖКТ;
  • травмы;
  • проблемы с балансом питательных веществ;
  • злоупотребление фаст-фуда.

Из-за нехватки одной кислоты не вырабатывается нужный белок, поэтому отбираются аминокислоты из других белков и нарушают функциональность других органов, мышц, сердца или мозга и это перетекает в заболевание, а также вносит дисбаланс. Белковый недостаток в детстве приводит к физическим и умственным недостаткам.

При нехватке аминокислот появляется анемия, снижается аминокислота, появляются кожные заболевания. При острой нехватке организм черпает свои резервы, в итоге наступает истощение, слабость мышечная и т.д. Вследствие этого тормозится развитие и строительство мышц, пищеварения, наступают депрессии и прочее.

Читайте так же:  Всасывание аминокислот и глюкозы происходит

4 Незаменимые аминокислоты. Пищевая и биологическая ценность белков

В организме человека синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые – незаменимыми.

Жизнедеятельность человека обеспечивается ежедневным потреблением с пищей сбалансированной смеси, содержащей восемь незаменимых аминокислот и две частично заменимые (аргинин и гистидин). Незаменимые представлены ароматическими (фенилаланин, триптофан), алифатическими (лейцин, валин, изолейцин, лизин), а также содержащими серу (метионин) и гидроксильную группу (треонин).

Отсутствие в пище хотя бы одной незаменимой аминокислоты приводит к неполному усвоению других, что в итоге приводит к тяжёлым клиническим последствиям.

Для оценки аминокислотного состава белков в пищевом продукте используют показатель аминокислотного скора (АС). Скор выражают в процентах или безразмерной величиной, представляющей собой отношение содержания незаменимой аминокислоты (АК) в белке исследуемого пищевого продукта к ее количеству в эталонном «идеальном» белке.

Аминокислотный состав эталонного белка сбалансирован и идеально соответствует потребностям организма человека в каждой незаменимой кислоте, поэтому его еще называют «идеальным».

Аминокислота, скор которой имеет самое низкое значение, называется первой лимитирующей аминокислотой. Значение скора этой аминокислоты определяет биологическую ценность и степень усвоения белков.

Другой метод определения биологической ценности белков заключается в определении индекса незаменимых аминокислот (ИНАК). Этот показатель является интегральным и позволяет учитывать количество всех незаменимых кислот в белке исследуемого продукта. Индекс рас­считывают по формуле:

где n – число аминокислот, шт;

б,э – содержание аминокислоты в белке изучаемого продукта и эталонном белке, соответственно.

Удельный вес незаменимых аминокислот в общем количестве белков животного происхождения составляет 43

52%. В растительных продуктах их присутствие составляет лишь3245%. К тому же, усвояемость их значительно снижена из-за прочной связи белков с клетчаткой. Если принять усвояемость белков молока за 100%, то усвояемость белков мяса составит 90%, картофеля – 80%, пшеницы – 50%, белков некоторых овощей – 2530%.

Кроме того животные белки лучше сбалансированы по аминокислотному составу.

Лекция №3 Тема: Физиологическое значение белков и аминокислот в питании человека.

1 Важнейшие группы пептидов и их физиологическая роль.

2 Характеристика белков пищевого сырья.

3 Новые формы белковой пищи.

4 Функциональные свойства белков.

1 Важнейшие группы пептидов и их физиологическая роль.

Пептиды – это олигомеры, составленные из остатков аминокислот. Они имеют невысокую молекулярную массу (содержание остатков аминокислот колеблется от нескольких штук до нескольких сотен).

В организме пептиды образуются либо в процессе синтеза из аминокислот, либо при гидролизе (расщеплении) белковых молекул.

На сегодня установлены физиологическое значение и функциональная роль наиболее распространенных групп пептидов, от которых зависят здоровье человека, органолептические и санитарно-гигиенические свойства пищевых продуктов.

Пептиды-буферы. В мышцах животных и человека обнаружены дипептиды, выполняющие буферные функции, то есть поддерживающие постоянный уровень рН.

Пептиды-гормоны. Гормоны – вещества органической природы, вырабатываемые клетками желез, регулируют деятельность отдельных органов, желез и организма в целом: сокращение гладкой мускулатуры организма и секреции молока молочными железами, регуляция деятельности щитовидной железы, активности роста организма, образования пигментов, обуславливающих цвет глаз, кожи, волос.

Нейропептиды. Это две группы пептидов (эндорфины и энкефалины), содержащихся в мозге человека и животных. Они определяют реакции поведения (боязнь, страх), влияют на процессы запоминания, обучения, регулируют сон, снимают боль.

Вазоактивные пептиды синтезируются из белков пищи в результате, они оказывают влияние на тонус сосудов.

Пептидные токсины представляют собой группу токсинов, вырабатываемых мироорганизмами, ядовитыми грибами, пчёлами, змеями, морскими моллюсками и скорпионами. Для пищевой промышленности они нежелательны. Наибольшую опасность представляют токсины микроорганизмов (золотистый стафилококк, бактерии ботулизма, сальмонеллы), в том числе грибков, которые развиваются в сырье, полуфабрикатах и готовых пищевых продуктах.

Пептиды-антибиотики. Представители данной группы пептидов бактериального или грибкового происхождения используется в борьбе с инфекционными заболеваниями, вызываемыми стрептококками, пневмококками, стафилококками и др. микроорганизмами.

Вкусовые пептиды– прежде всего это соединения со сладким или горьким вкусом. Пептиды горького вкуса образуются в молодых ещё незрелых ферментативных сырах. Пептиды со сладким вкусом (аспартам) используются в качестве заменителя сахара.

Видео (кликните для воспроизведения).

Протекторные пептидывыполняют защитные функции, прежде всего – антиокислительные.

Источники


  1. Табидзе, Нана Джимшеровна Диабет. Образ Жизни / Табидзе Нана Джимшеровна. — Москва: РГГУ, 2011. — 986 c.

  2. Детское питание. Книга о том, как правильно кормить ребенка, чтобы вырастить его здоровым и крепким. — М.: Госторгиздат, 1964. — 240 c.

  3. Богданова, О. Большая книга диабетика. Все, что вам необходимо знать о диабете / О. Богданова, Н. Башкирова. — М.: АСТ, АСТ Москва, Прайм-Еврознак, 2008. — 352 c.
  4. Розанов, В. В. В. В. Розанов. Сочинения. В 12 томах. Том 2. Юдаизм. Сахарна / В.В. Розанов. — М.: Республика, 2011. — 624 c.
  5. Антипова, Л. Книга о русской вкусной и здоровой еде / Л. Антипова, Л. Пащенко, М. Успенская. — Москва: Гостехиздат, 2014. — 544 c.
Значение аминокислот и белков
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here